Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (5): 567-572.DOI: 10.15541/jim20190229
Special Issue: 环境与催化材料论文精选; 【虚拟专辑】碳中和(2020~2021)
Previous Articles Next Articles
DONG Mengyue,XU Weiwei,ZHAO Jing,DI Lanbo(),ZHANG Xiuling(
)
Received:
2019-05-15
Revised:
2019-09-12
Published:
2020-05-20
Online:
2019-10-23
Supported by:
CLC Number:
DONG Mengyue, XU Weiwei, ZHAO Jing, DI Lanbo, ZHANG Xiuling. Ru/γ-Al2O3 and Plasma Co-activation for CO2 Methanation: Effect of Catalytic Material Preparation Method[J]. Journal of Inorganic Materials, 2020, 35(5): 567-572.
Sample | Ru0/(Ru0+Ru3+) | Ru/Ala | DRu/nmb |
---|---|---|---|
Ru/γ-Al2O3-P | 70.6% | 0.0283 | (2.3±0.5) |
Ru/γ-Al2O3-T | 66.7% | 0.0211 | (3.3±1.2) |
Table 1 Valence state proportion of Ru, atomic ratio of Ru/Al and size of Ru nanoparticles in Ru/γ-Al2O3-P and Ru/γ-Al2O3-T
Sample | Ru0/(Ru0+Ru3+) | Ru/Ala | DRu/nmb |
---|---|---|---|
Ru/γ-Al2O3-P | 70.6% | 0.0283 | (2.3±0.5) |
Ru/γ-Al2O3-T | 66.7% | 0.0211 | (3.3±1.2) |
[1] |
HUANG C H, TAN C S . A review: CO2 utilization. Aerosol and Air Quality Research, 2014,14(2):480-499.
DOI URL |
[2] |
CHEN S Q, LÜ G X . CO2 methanation over Ru/TiO2 catalysts under UV irradiation and heating. Journal of Inorganic Materials, 2014,29(12):1287-1293.
DOI URL |
[3] |
TU X, WHITEHEAD J C . Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature. Applied Catalysis B: Environmental, 2012,125:439-448.
DOI URL |
[4] | MEI D H, HE Y L, LIU S Y , et al. Optimization of CO2 conversion in a cylindrical dielectric barrier discharge reactor using design of experiments. Plasma Processes and Polymers, 2016,13(5):544-556. |
[5] | CHEN G X, SILVA T, GEORGIEVA V , et al. Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge. International Journal of Hydrogen Energy, 2015,40(9):3789-3796. |
[6] | DAI B, GONG W M, ZHANG X L , et al. Progress on CO2 conversion by plasma-catalysis. Progress in Chemistry, 2002,14(3):225-230. |
[7] | ZENG Y X, TU X . Plasma-catalytic CO2 hydrogenation at low temperatures. IEEE Transactions on Plasma Science, 2016,44(4):405-411. |
[8] | GARBARINO G, BELLOTTI D, RIANI P , et al. Methanation of carbon dioxide on Ru/Al2O3 and Ni/Al2O3 catalysts at atmospheric pressure: catalysts activation, behaviour and stability. International Journal of Hydrogen Energy, 2015,40(30):9171-9182. |
[9] | CHU W, XU J Q, HONG J P , et al. Design of efficient Fischer Tropsch cobalt catalysts via plasma enhancement: reducibility and performance. Catalysis Today, 2015,256(1):41-48. |
[10] |
GUO F, XU J Q, CHU W . CO2 reforming of methane over Mn promoted Ni/Al2O3 catalyst treated by N2 glow discharge plasma. Catalysis Today, 2015,256(1):124-129.
DOI URL |
[11] | Di L B, Li Z, PARK D W , et al. Atmospheric-pressure cold plasma for synthesizing Pd/FeOx catalysts with enhanced low-temperature CO oxidation activity. Japanese Journal of Applied Physics, 2017,56(6):060301. |
[12] | ZHANG X L, XU W W, DUAN D Z , et al. Atmospheric pressure oxygen cold plasma for synthesizing Au/TiO2 catalysts: effect of discharge voltage and discharge time. IEEE Transactions on Plasma Science, 2018,46(8):2776-2781. |
[13] | TU X, GALLON H J, TWIGG M V , et al. Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor. Journal of Physics D: Applied Physics, 2011,44(27):274007. |
[14] |
DI L B, ZHANG J S, ZHANG X L . A review on the recent progress, challenges, and perspectives of atmospheric-pressure cold plasma for preparation of supported metal catalysts. Plasma Processes and Polymers, 2018,15(5):1700234.
DOI URL |
[15] | LI Z, ZHANG X L, ZHANG Y Z , et al. Hydrogen cold plasma for synthesizing Pd/C catalysts: the effect of support-metal ion interaction. Plasma Science and Technology, 2018,20(1):108-113. |
[16] |
ZHU Y, ZHANG S R, YE Y, C , et al. Catalytic conversion of carbon dioxide to methane on ruthenium-cobalt bimetallic nanocatalysts and correlation between surface chemistry of catalysts under reaction conditions and catalytic performances. ACS Catalysis, 2012,2(11):2403-2408.
DOI URL |
[17] |
BALINT I, MIYAZAKI A, AIKA K . The relevance of Ru nanoparticles morphology and oxidation state to the partial oxidation of methane. Journal of Catalysis, 2003,220(1):74-83.
DOI URL |
[1] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[2] | TIAN Zhao-Bo, CHEN Ke-Xin, SUN Si-Yuan, ZHANG Jie, CUI Wei, LIU Guang-Hua. Synthesis of SiC@SiO2 Nanocables via a Catalyst-free Carbothermal Reduction Method [J]. Journal of Inorganic Materials, 2019, 34(11): 1217-1221. |
[3] |
LIU Qian, ZHOU Zhen-Zhen.
Progress in Activated-synthesis of Si-based Oxynitrides Materials at Low Temperatures [J]. Journal of Inorganic Materials, 2018, 33(2): 129-137. |
[4] | MAO Xi-Xi, LI Jun, ZHANG Hai-Long, XU Yong-Gang, WANG Shi-Wei. Synthesis of AlN Powder by Carbothermal Reduction-nitridation of Alumina/Carbon Black Foam [J]. Journal of Inorganic Materials, 2017, 32(10): 1115-1120. |
[5] | ZHANG Cheng, GONG Jun-Jie, DONG Zhi-Jun, MENG Jian, ZHOU Si-Cheng, YUAN Guan-Ming, LI Xuan-Ke. HfC Precursor: Synthesis and Pyrolysis Behavior [J]. Journal of Inorganic Materials, 2017, 32(10): 1095-1101. |
[6] |
PENG Xia, LI Shu-Xing, LIU Xue-Jian, HUANG Yi-Hua, HUANG Zheng-Ren, LI Hui-Li.
Syntheses and Photoluminescence Properties of Eu2+/Tb3+ Doped Sr2Si5N8 Phosphors [J]. Journal of Inorganic Materials, 2015, 30(4): 397-400. |
[7] | PENG Xia,LI Shu-Xing, LIU Xue-Jian, HUANG Zheng-Ren, LI Hui-Li. Syntheses and Photoluminescence Properties of Sr2Si5N8:Eu2+ Phosphors [J]. Journal of Inorganic Materials, 2014, 29(12): 1281-1286. |
[8] | ZHAO Chun-Rong, YANG Juan-Yu, DING Hai-Yang, LU Shi-Gang. Synthesis and Characterization of Core-shell SiC/SiO2 Nanowires at Low Temperature [J]. Journal of Inorganic Materials, 2013, 28(9): 971-976. |
[9] | LU Yuan, YANG Jian-Feng, LI Jing-Long. Fabrication of Porous Silicon Nitride with High Porosity by Carbothermal Reduction-reaction Bonding [J]. Journal of Inorganic Materials, 2013, 28(5): 469-473. |
[10] | LIU Xue-Jian, YUAN Xian-Yang, ZHANG Fang, HUANG Zheng-Ren, WANG Shi-Wei. Fabrication of Aluminum Oxynitride Transparent Ceramics by Carbothermal Reduction Nitridation Processing [J]. Journal of Inorganic Materials, 2010, 25(7): 678-682. |
[11] | XIAO Jin,ZHOU Feng,CHEN Yan-Bin. Preparation of AlN Powder by Microwave Carbon Thermal Reduction [J]. Journal of Inorganic Materials, 2009, 24(4): 755-758. |
[12] | YE Xin-Nan,ZHAO Zhong-Ling,LAN Lin,HUANG Jin-Qiu,LIN Kun-Lun,CHEN Li-Fu. One-step Synthesis of High Purity Silicon Carbide Powder [J]. Journal of Inorganic Materials, 2008, 23(2): 243-246. |
[13] | LIU Su-Qin,GONG Ben-Li,,ZHANG Ge,LI Shi-Cai. Synthesis of LiFePO4/C Composite Cathode Materials by a Novel Carbothermal Reduction Method and Its Performance [J]. Journal of Inorganic Materials, 2007, 22(2): 283-286. |
[14] | PAN Shun-Long,YANG Yan-Feng,ZHANG Jing-Jie,SONG Guang-Zhi. Synthesis of Nanocrystalline Silicon Carbide Powder by Precipitaion-spray Drying [J]. Journal of Inorganic Materials, 2006, 21(6): 1319-1324. |
[15] | SHAN Shao-Yun,YANG Jian-Feng,GAO Ji-Qiang,ZHANG Wen-Hui,JIN Zhi-Hao. Porous Silicon Nitride Ceramics Prepared by Carbothermal Reduction Method [J]. Journal of Inorganic Materials, 2006, 21(4): 913-918. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||