Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (3): 263-268.DOI: 10.15541/jim20150342
• RESEARCH PAPER • Previous Articles Next Articles
LU Guan-Hong1,2(), ZHAO Xin-Luo1, WANG Yan2, ZHU Shu-Ying2, SUN Jing2, XIE Xiao-Feng2(
)
Received:
2015-07-20
Revised:
2015-11-17
Published:
2016-03-20
Online:
2016-02-24
Supported by:
CLC Number:
LU Guan-Hong, ZHAO Xin-Luo, WANG Yan, ZHU Shu-Ying, SUN Jing, XIE Xiao-Feng. Effects of SnS Doping on Photovoltaic Performance of P3HT:PCBM Multilayer Heterojunction Solar Cells[J]. Journal of Inorganic Materials, 2016, 31(3): 263-268.
Fig. 2 SEM images of TiO2/SnS/P3HT:PCBM multilayer electrodes(a) Surface of TiO2 electrode; (b) Side view of TiO2 electrode; (c) Surface of TiO2/SnS composite electrode; (d) Side view of TiO2/SnS composite electrode; (e) Surface of TiO2/SnS/P3HT:PCBM composite electrode; (f) Side view of the multilayer heterojunction solar cell
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
S0 | 0.440 | 0.81 | 41.5 | 0.148 |
S1 | 0.286 | 1.03 | 47.0 | 0.139 |
S2 | 0.296 | 1.15 | 51.9 | 0.177 |
S3 | 0.373 | 1.92 | 51.2 | 0.369 |
S4 | 0.269 | 1.00 | 48.1 | 0.129 |
S5 | 0.264 | 1.09 | 45.7 | 0.132 |
Table1 Photovoltaic parameters including Voc, Jsc, FF and PCE of the multilayer heterojunction solar cells (S0~S5)
Sample | Voc/V | Jsc/(mA·cm-2) | FF/% | PCE/% |
---|---|---|---|---|
S0 | 0.440 | 0.81 | 41.5 | 0.148 |
S1 | 0.286 | 1.03 | 47.0 | 0.139 |
S2 | 0.296 | 1.15 | 51.9 | 0.177 |
S3 | 0.373 | 1.92 | 51.2 | 0.369 |
S4 | 0.269 | 1.00 | 48.1 | 0.129 |
S5 | 0.264 | 1.09 | 45.7 | 0.132 |
Fig. 6 Sn and S elements distribution curves of solar cells (a) S elements distribution curve; (b) Sn elements distribution curve (Ⅰ/Ⅱ/Ⅲ/Ⅳ corresponding to Ag, TiO2/SnS/P3HT:PCBM, FTO, Glass)
[1] | HOSSAIN M A, KOH Z Y, WANG Q.PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing.Phys. Chem. Chem. Phys., 2012, 14(20): 7367-7374. |
[2] | HOSSAIN M A, JENNINGS J R, SHEN C, et al. CdSe-sensitized mesoscopic TiO2 solar cells exhibiting > 5% efficiency: redundancy of CdS buffer layer. J. Mater. Chem., 2012, 22(32): 16235-16242. |
[3] | ITZHAKOV S, SHEN H P, BUHBUT S, et al. Type-II quantum- dot-sensitized solar cell spanning the visible and near-infrared spectrum. J. Phys. Chem. C, 2013, 117(43): 22203-22210. |
[4] | LEE J W, SON D Y, AHN T K, et al. Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent. Sci Rep., 2013, 3: 10501-10508. |
[5] | SANTRA P K, KAMAT P V.Mn-Doped Quantum dot sensitized solar cells: a strategy to boost efficiency over 5%.J. Am. Chem. Soc., 2012, 134(5): 2508-2511. |
[6] | ZHU G, PAN L, XU T, et al. CdS/CdSe-cosensitized TiO2 photoanode for quantum-dot-sensitized solar cells by a microwave- assisted chemical bath deposition method. ACS Appl. Mater. Interfaces, 2011, 3(8): 3146-3151. |
[7] | SINSERMSUKSAKUL P, HARTMAN K, KIM S B, et al. Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl. Phys. Lett., 2013, 102(5): 0539011-0539015. |
[8] | WANG Y, GONG H, FAN B H, et al. Photovoltaic behavior of nanocrystalline SnS/TiO2. J. Phys. Chem. C, 2010, 114(7): 3256-3259. |
[9] | GUO W, SHEN Y H, WU M X, et al. Highly efficient inorganic- organic heterojunction solar cells based on SnS-sensitized spherical TiO2 electrodes. Chem. Commun., 2012, 48(49): 6133-6135. |
[10] | XU Y, AL-SALIM N, BUMBY C W, et al. Synthesis of SnS quantum dots. J. Am. Chem. Soc., 2009, 131(44): 15990-15991. |
[11] | MIYAUCHI M.Tailoring of SnS quantum dots in mesoporous media for efficient photoelectrochemical device.Chem. Phys. Lett., 2011, 514(1/2/3): 151-155. |
[12] | ODA Y, SHEN H P, ZHAO L, et al. Energetic alignment in nontoxic SnS quantum dot-sensitized solar cell employing spiro-OMeTAD as the solid-state electrolyte. Sci. Technol. Adv. Mater., 2014, 15(3): 0350061-0350068. |
[13] | ZHANG X P, LAN Z, CHEN L, et al. Preparation and photovoltaic performance of SnS sensitized nanocrystallite TiO2 photoanode. J. Inorg. Mater., 2013, 28(10): 1093-1097. |
[14] | SINSERMSUAKUL P, SUN L Z, LEE S W, et al. Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater., 2014, 4(15): 14004961-14004967. |
[15] | AKSAY S, OZER T, ZOR M.Vibrational and X-ray diffraction spectra of SnS film deposited by chemical bath deposition method.Eur. Phys. J-Appl. Phys., 2009, 47(3): 305021-305023. |
[16] | RAGINA A J, MURALI K V, PREETHA K C, et al. UV irradiated wet chemical deposition and characterization of nanostructured tin sulfide thin films. J. Mater. Sci.-mater Electron., 2012, 23(12): 2264-2271. |
[17] | FALKE S M, ROZZI C A, BRIDA D, et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science., 2014, 344(6187): 1001-1005. |
[18] | XIONG J, YANG B C, ZHOU C H, et al. Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer. Org. Electron., 2014, 15(4): 835-843. |
[19] | YANG B, YUAN Y B, HHUANG J S.Reduced bimolecular charge recombination loss in thermally annealed bilayer heterojunction photovoltaic devices with large external quantum efficiency and fill factor. J. Phys. Chem. C, 2014, 118(10): 5196-5202. |
[20] | REYES-REYES M, KIM K, CARROL D L.High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C-61 blends.Appl. Phys. Lett., 2005, 87(8): 0835061-0835063. |
[21] | HAIDAR G L, KHALID I A, HUSSAIN A.The photovoltaic efficiency of the fabrication of copolymer P3HT:PCBM on different thickness nano-anatase titania as solar cell.SPECTROCHIM ACTA PART A: Molecular and Biomolecular Spectroscopy, 2015, 145: 598-603. |
[22] | DOCAMPO P, BALL J M, DARWICH M, et al. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun., 2013, 4: 27611-27616. |
[23] | PATEL T H.Influence of deposition time on structural and optical properties of chemically deposited sns thin films.The Open Surface Science Journal, 2012, 4: 6-13. |
[24] | LEFRANCOIS A, LUSZCZYNSKA B, PEPIN-DONAT B, et al. Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells. Sci Rep., 2015, 5: 77681-77688. |
[25] | SOHILA S, RAJALAKSHMI M, GHOSH C, et al. Optical and Raman scattering studies on SnS nanoparticles. J. Alloys. Compd., 2011, 509(19): 5843-5847. |
[26] | LIU Y K, HOU D D, WANG G H.Synthesis and characterization of SnS nanowires in cetyltrimethylammoniumbromide (CTAB) aqueous solution.Chem. Phys. Lett., 2003, 379(1/2): 67-73. |
[1] | CHEN Yu, LIN Puan, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(9): 991-1004. |
[2] | DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite [J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043. |
[3] | WANG Xinling, ZHOU Na, TIAN Yawen, ZHOU Mingran, HAN Jingru, SHEN Yuansheng, HU Zhiyi, LI Yu. SnS2/ZIF-8 Derived Two-dimensional Porous Nitrogen-doped Carbon Nanosheets for Lithium-sulfur Batteries [J]. Journal of Inorganic Materials, 2023, 38(8): 938-946. |
[4] | REN PeiAn, WANG Cong, ZI Peng, TAO Qirui, SU Xianli, TANG Xinfeng. Effect of Te and In Co-doping on Thermoelectric Properties of Cu2SnSe3 Compounds [J]. Journal of Inorganic Materials, 2022, 37(10): 1079-1086. |
[5] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[6] | JIN Min, BAI Xudong, ZHAO Su, ZHANG Rulin, CHEN Yuqi, ZHOU Lina. Mechanical Property of SnSe Single Crystal Prepared via Vertical Bridgman Method [J]. Journal of Inorganic Materials, 2021, 36(3): 313-318. |
[7] | SHAN Wei,FU Zhengqian,ZHANG Faqiang,MA Mingsheng,LIU Zhifu,LI Yongxiang. SnS2 Nanoplates: Synthesis and NO2 Sensing Property [J]. Journal of Inorganic Materials, 2020, 35(4): 497-504. |
[8] | Xi-Qing LÜ, Huan-Yu ZHANG, Rui LI, Mei ZHANG, Min GUO. Nb2O5 Coating on the Performance of Flexible Dye Sensitized Solar Cell Based on TiO2 Nanoarrays/Upconversion Luminescence Composite Structure [J]. Journal of Inorganic Materials, 2019, 34(6): 590-598. |
[9] | Xin XU, Shu-Rong WANG, Xun MA, Shuai YANG, Yao-Bin LI, Hong-Bin YANG. Comparative Study of Cu2ZnSnS4 Thin Films Prepared by Chalcogenide and Single Targets [J]. Journal of Inorganic Materials, 2019, 34(5): 529-534. |
[10] | ZHOU Yi-Ming, ZHOU Yu-Ling, PANG Qian-Tao, SHAO Jian-Wei, ZHAO Li-Dong. Different Doping Sites of Ag on Cu2SnSe3 and Their Thermoelectric Property [J]. Journal of Inorganic Materials, 2019, 34(3): 301-309. |
[11] | HUANG Zhi-Cheng, YAO Yao, PEI Jun, DONG Jin-Feng, ZHANG Bo-Ping, LI Jing-Feng, SHANG Peng-Peng. Preparation and Thermoelectric Property of n-type SnS [J]. Journal of Inorganic Materials, 2019, 34(3): 321-327. |
[12] | LI Jia-Yan, CAI Min, WU Xiao-Wei, TAN Yi. Recycling Polycrystalline Silicon Solar Cells [J]. Journal of Inorganic Materials, 2018, 33(9): 987-992. |
[13] | XU Shun-Jian, XIAO Zong-Hu, LUO Xiao-Rui, ZHONG Wei, LOU Yong-Ping, OU Hui. Cooperative Effect of Carbon Nanotubes and Dimethyl Sulfoxide on PEDOT:PSS Hole Transport Layer in Planar Perovskite Solar cells [J]. Journal of Inorganic Materials, 2018, 33(6): 641-647. |
[14] | MENG Xiang-Dong, YIN Mo, SHU Ting, HU Yue, SUN Meng, YU Zhao-Liang, LI Hai-Bo. Research Progress on Counter Electrodes of Quantum Dot-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2018, 33(5): 483-493. |
[15] | CHENG Hou-Yan, LUO Jun, HUANG Li-Qun, LI Jia-Ke, YANG Zhi-Sheng, GUO Ping-Chun, WANG Yan-Xiang, ZHANG Qi-Feng. Preparation of Flexible Dye-sensitized Solar Cells Based on Hierarchical Structure ZnO Nanosheets [J]. Journal of Inorganic Materials, 2018, 33(5): 507-514. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||