[1] |
KAPLAN D L.Mollusc shell structures: novel design strategies for synthetic materials.Curr. Opin. Solid State Mat. Sci., 1998, 3(3): 232-236.
|
[2] |
MAYER G, MEHMET S.Rigid biological composite materials: structural examples for biomimetic design. Experimental Mechanics, 2002, 42(4): 395-403.
|
[3] |
LIU ZISHENG, LIU CHANGSHENG. Progress in research on magnesium phosphate cement as inorganic binder for bone repair. Materials Review, 2000, 14(5): 29-32.
|
[4] |
WAGH A S, JEONG S Y.Chemically bonded phosphate ceramics: A dissolution model of formation. J. Am. Ceram. Soc., 2003, 86(11): 1838-1844.
|
[5] |
MESTRES G, GINEBRA M P. Novel magnesium phosphate cements with high early strength and antibacterial properties. Acta Biomaterialia, 2011, 7(4): 1853-1861.
|
[6] |
MESTRES G, ABDOLHOSSEINI M, BOWLES W, et al. Antimicrobial properties and dentin bonding strength of magnesium phosphate cements. Acta Biomaterialia, 2013, 9(9): 8384-8393.
|
[7] |
MOSEKE C, SARATSIS V, GBURECK U. Injectability and mechanical properties of magnesium phosphate cements. J. Mater. Sci.: Mater. Med., 2011, 22(12): 2591-2598.
|
[8] |
PINA S, OLHERO S M, GHEDUZZI S, et al. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomaterialia, 2009, 5(4): 1233-1240.
|
[9] |
KLAMMERT U, REUTHER T, BLANK M, et al. Phase composition, mechanical performance and invitro biocompatibility of hydraulic setting calcium magnesium phosp-hate cement. Acta Biomaterialia , 2010, 6(4): 1529-1535.
|
[10] |
VORNDRAN E, EWALD A, MÜLLER F A, et al. Formation and properties of magnesium-ammonium- phosphate hexahydrate biocements in the Ca-Mg-PO4 system. J. Mater. Sci.: Mater. Med., 2011, 22(3): 429-436.
|
[11] |
FAN WU, JIE WEI, HAN GUO, et al. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Acta Biomaterialia, 2008, 4(6): 1873-1884.
|
[12] |
SADER M S, LEGEROS R Z, SOARES G A. Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. J. Mater. Sci. : Mater Med, 2009, 20(2): 521-527.
|
[13] |
LEROUX L, HATIM Z FRÈCHE M.et al.Effect of various adjuvants (lactic acid, glycerol and chitosan) on the injectability of a calcium phosphate cement. Bone, 1999, 25(2): 31-34.
|
[14] |
QU HAIBO, WEI MEI. Improvement of bonding strength between biomimetic apatite coating and substrate. J. Biomed. Mater. Res. B Appl. Biomater., 2008, 84(2): 436-443.
|
[15] |
WANG X, SUBRAMANIAN A, DHANDA R, et al.Testing of bone-biomaterial interfacial bonding strength: a comparison of different techniques. J. Biomed. Mater. Res., 1996, 33(3): 133-138.
|
[16] |
WANG AI-JUAN, ZHANG JIAO, LI JUN-MING, et al. Effect of liquid-to-solid ratios on the properties of magnesium phosphate chemically bonded ceramics. Materials Science and Engineering C, 2013, 33(5): 2508-2512.
|
[17] |
XIA JINHONG, YUAN DAWEI, WANG LIJIU. Research on hydration mechanism of magnesia phosphate cement. Journal of Wuhan University of Technology, 2009, 31(9): 25-28.
|
[18] |
SOUDÉE E, PÉRA J. Influence of magnesia surface on the setting time of magnesia-phosphate cement. Cement and Concrete Research, 2002, 32(1): 153-155.
|
[19] |
WANG AI-JUAN, LI JUN-MING, MA AN-BO, et al. Effect of magnesium oxide calcining temperatures on setting process of magnesium phosphate bone adhesive. Transactions of Materials and Heat Treatment, 2012, 33(7): 5-8.
|
[20] |
RUAN CHENGXIANG. Concrete Admixture and Its Engineering Application. Nanchang: Jiangxi scientific and Technical Press, 2008: 366-380.
|
[21] |
BURGUERA E F, XU H H K, SUN L. Injectable calcium phosphate cement: effects of powder-to-liquid ratio and needle size. J. Biomed Mater. Res. B Appl. Biomater., 2008, 84(2): 493-502.
|