Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (9): 917-923.DOI: 10.15541/jim20130656
• Orginal Article • Previous Articles Next Articles
CHEN Ming-Zhe, GUO Xiao-Dong, ZHONG Ben-He, YAN Hui-Min, ZHANG Ji-Bin, LIU Ju
Received:
2013-12-11
Revised:
2014-02-01
Published:
2014-09-17
Online:
2014-08-21
About author:
CHEN Ming-Zhe. E-mail: c706000364@126.com
Supported by:
CLC Number:
CHEN Ming-Zhe, GUO Xiao-Dong, ZHONG Ben-He, YAN Hui-Min, ZHANG Ji-Bin, LIU Ju. High Energy Density Spinel LiCr0.2Ni0.4Mn1.4O4 Cathode Material Prepared by Spray Pyrolysis Method[J]. Journal of Inorganic Materials, 2014, 29(9): 917-923.
Fig. 4 Rate performances of as-fabricated cells (3.6-5.0 V and 3.6-5.2 V, similarly hereinafter) at different discharge rates(a), cyclic stability performances of two batteries at 1C and 10C(b), discharge curves at different rates of two cells(c) and Ragone plots for both batteries (d)
Fig. 6 A C impedance spectra of two cells (a) and the relationship between impedance and low frequency region, and the diffusion coefficients of Li+ of both (b)
Cut-off voltage | R1/Ω | R2/Ω | DLi+/(cm2?s-1) |
---|---|---|---|
5.0 V | 4.15 | 32.15 | 2.990×10-11 |
5.2 V | 3.62 | 89.67 | 1.435×10-12 |
Table 1 The calculated values of different resistances and diffusion coefficients of Li+
Cut-off voltage | R1/Ω | R2/Ω | DLi+/(cm2?s-1) |
---|---|---|---|
5.0 V | 4.15 | 32.15 | 2.990×10-11 |
5.2 V | 3.62 | 89.67 | 1.435×10-12 |
[1] | KRAYTSBERG A, HIGHEREIN-ELI Y, STRONGER BETTER. A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater., 2012, 10(2): 922-939. |
[2] | CLARK J M, NISHIMURA S, YAMADA A, et al. High-voltage pyrophosphate cathode: insights into local structure and lithium- diffusion pathways. Angew. Chem., 2012, 51(5): 13149-13153. |
[3] | ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci., 2011, 9(4): 3243-3262. |
[4] | XIAO J, CHEN X L, SUSHKO P V, et al. High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv. Mater., 2012, 24(16): 2109-2116. |
[5] | SONG J, SHIN D W, LU Y, et al. Role of oxygen vacancies on the performance of Li[Ni0.5-xMn1.5+x]O4(x= 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem. Mater., 2012, 24(15): 3101-3109. |
[6] | CABANA J, CASAS-CABANAS M, OMENYA F O, et al. Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem. Mater., 2012, 24(15): 2952-2964. |
[7] | NIE X, ZHONG B H, CHEN M Z, et al. Synthesis of LiCr0.2Ni0.4Mn1.4O4 with superior electrochemical performance via a two-step thermo polymerization technique. Electrochim. Acta, 2013, 97(1): 184-191. |
[8] | SUN Q, LI X H, WANG Z X, et al. Synthesis and electrochemical performance of 5 V spinel LiNi0.5Mn1.5O4 prepared by solid-state reaction. Trans. Nonferrous Met. Soc. China, 2009, 19(1): 176-181. |
[9] | ZHU Z, YAN H, ZHANG D, et al. Preparation of 4.7 V cathode material LiNi0.5Mn1.5O4 by an oxalic acid-pretreated solid-state method for lithium-ion secondary battery. J. Power Sources, 2013, 224(1): 13-19. |
[10] | ZHANG X L, CHENG F Y, ZHANG K, et al. Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro-nano structure and high rate capability. RSC Adv., 2012, 13(2): 5669-5675. |
[11] | FENG J J, HUANG Z P, GUO C, et al. An organic coprecipitation route to synthesize high voltage LiNi0.5Mn1.5O4. ACS Appl. Mater. Interfaces, 2013, 5(20): 10227-10232. |
[12] | ZHAO SHI-XI, LI YING-DA, DING HAO, et al. Structure and electrochemical performance of LiFePO4/C cathode materials coated with nano Al2O3 for lithium-ion battery. Journal of Inorganic Materials, 2013, 28(11): 136-140. |
[13] | PARK S H, SUN Y K. Synthesis and electrochemical properties of 5V spinel LiNi0.5Mn1.5O4 cathode materials prepared by ultrasonic spray pyrolysis method. Electrochim. Acta, 2004, 50(2): 431-434. |
[14] | KIM J H, MYUNG S T, SUN Y K. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochim. Acta, 2004, 49(2): 219-227. |
[15] | ZHANG WEN-HUA, HE WEI, PEI FENG, et al. Improved electrochemical properties of Al3+-doped 0.5Li2MnO3- 0.5LiCo1/3Ni1/3Mn1/3O2 cathode for lithium ion batteries. Journal of Inorganic Materials, 2013, 28(11): 114-117. |
[16] | SUN Y C, WANG Z X, HUANG X J, et al. Synthesis and electrochemical performance of spinel LiMn2-x-yNixCryO4 as 5 V cathode materials for lithium ion batteries. J. Power Sources, 2004, 132(1): 161-165. |
[17] | SUSHKO P V, ROSSO K M, ZHANG J G, et al. Oxygen vacancies and ordering of d-levels control voltage suppression in oxide cathodes: the case of spinel LiNi0.5Mn1.5O4-δ. Adv. Funct. Mater., 2013(1): 205-210. |
[18] | WANG L, LI H, HUANG X, et al. A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4”. Solid State Ionics, 2011, 193(1): 32-38. |
[19] | ZHANG X L, CHENG F Y, YANG J G, et al. LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett., 2013, 13(6): 2822-2825. |
[20] | AKLALOUCH M, ROJAS R M, ROJO J M, et al. The role of particle size on the electrochemical properties at 25 and at 55℃ of the LiCr0.2Ni0.4Mn1.4O4 spinel as 5 V-cathode materials for lithium-ion batteries. Electrochim. Acta, 2009, 54(28): 7542-7550. |
[21] | AURBACH D, MARKOVSKY B, TALYOSSEF Y, et al. Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5 V cells. J. Power Sources, 2006, 162(2): 780-789. |
[22] | SHA O, TANG Z Y, WANG S L, et al. The multi-substituted LiNi0.475Al0.01Cr0.04Mn1.475O3.95F0.05 cathode material with excellent rate capability and cycle life. Electrochim. Acta, 2012, 77(5): 250-255. |
[23] | AKLALOUCH M, AMARILLA J M, ROJAS R M, et al. Sub-micrometric LiCr0.2Ni0.4Mn1.4O4 spinel as 5 V-cathode material exhibiting huge rate capability at 25 and 55℃. Electrochem. Commun., 2010, 12(4): 548-552. |
[24] | PATOUX S, DANIEL L, BOURBON C, et al. High voltage spinel oxides for Li-ion batteries: From the material research to the application. J. Power Sources, 2009, 189(1): 344-352. |
[25] | ZHONG G B, WANG Y Y, ZHANG Z C, et al. Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4. Electrochim. Acta, 2011, 56(18): 6554-6561. |
[26] | ZHONG G B, WANG Y Y, YU Y Q, et al. Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5 V cathode materials for lithium ion batteries. J. Power Sources, 2012, 205(1): 385-393. |
[27] | SHIN D W, MANTHIRAM A. Surface-segregated, high-voltage spinel LiMn1.5Ni0.42Ga0.08O4 cathodes with superior high-tempera-ture cyclability for lithium-ion batteries. Electrochem. Commun., 2011, 13(11): 1213-1216. |
[28] | JU B W, WANG X Y, WEI Q L, et al. Synthesis and electrochemical performance of spherical high-voltage LiNi0.5Mn1.5O4. The Chinese Journal of Nonferrous Metals, 2013, 23(6): 1633-1639. |
[1] | ZHANG Yaping,LEI Yuxuan,DING Wenming,YU Lianqing,ZHU Shuaifei. Preparation and Photoelectrochemical Property of the Dual-ferroelectric Composited Material [J]. Journal of Inorganic Materials, 2020, 35(9): 987-992. |
[2] | ZHENG Kun, LUO Yongchun, DENG Anqiang, YANG Yang, ZHANG Haiming. Microstructure and Electrochemical Property of A2B7-type La0.3Y0.7Ni3.4-xMnxAl0.1 Hydrogen Storage Alloys [J]. Journal of Inorganic Materials, 2020, 35(5): 549-555. |
[3] | ZHANG Ya-Ping, DING Wen-Ming, ZHU Hai-Feng, HUANG Cheng-Xing, YU Lian-Qing, WANG Yong-Qiang, LI Zhe, XU Fei. Photoelectrochemical Properties of MoSe2 Modified TiO2 Nanotube Arrays [J]. Journal of Inorganic Materials, 2019, 34(8): 797-802. |
[4] | TONG Yan-Wei, ZHANG Xue-Feng, FANG Min-Xian. Structures and Electrochemical Properties of V2Ti0.5Cr0.5Ni1-xMox(x=0.02-0.08) Ni/MH Battery Anode Materials [J]. Journal of Inorganic Materials, 2016, 31(2): 148-152. |
[5] |
YANG Xue -Mei, LIU Zhong -Ping, LI Xiao -Dong, Zhang Ze -Ming, JI Lan-Xiang, DENG Jian-Guo.
Ultra-long VO2(B) Nanobelts : One-step Hydrothermal Synthesis and Electrochemical Properties [J]. Journal of Inorganic Materials, 2015, 30(4): 443-448. |
[6] | LI Jian, YAO Shu-Heng, ZHOU Hong-Ming, GENG Wen-Jun. Preparation of LiMn0.4Fe0.6PO4/C Composite by A New Route Combining Solid-state Reaction with Hydrothermal Synthesis [J]. Journal of Inorganic Materials, 2014, 29(4): 443-448. |
[7] | ZHANG Qian, LIU Wei-Wei, FANG Guo-Qing, XIA Bing-Bo, SUN Hong-Dan, KANEKO Shingo, YANG Yu-Sheng, ZHENG Jun-Wei, LI De-Cheng. Structural and Electrochemical Performances of Li1+2xMn0.3+xNi0.3-3xCr0.4O2 Synthesized by Spray-dry Method [J]. Journal of Inorganic Materials, 2013, 28(06): 616-622. |
[8] | TIAN Bao-Zhu,LI Chun-Zhong,GU Feng,JIANG Hai-Bo,HU Yan-Jie. Visible-light Photocataltic Activity of Cr-doped TiO2 Nanoparticles Synthesized by Flame Spray Pyrolysis [J]. Journal of Inorganic Materials, 2009, 24(4): 661-665. |
[9] | LIU Zhi-Min,HU Guo-Rong,FANG Zheng-Sheng,ZHANG Xin-Long,LIU Ye-Xiang. Synthesis and Characterization of LiNi1/3Co1/3Mn1/3O2 as a Cathode Material for Lithium Batteries by Ultrasonic Spray Pyrolysis [J]. Journal of Inorganic Materials, 2007, 22(4): 637-641. |
[10] | LIU Min,SUO Hong-Li,ZHAO Yue,ZHANG Ying-Xiao,LIU Dan-Min,ZHOU Mei-Ling. Improvement of YBCO Film Properties by Twostep Deposition Using Spray Pyrolysis Method [J]. Journal of Inorganic Materials, 2007, 22(2): 377-380. |
[11] | BIAN Ji-Ming,LIU Wei-Feng,HU Li-Zhong,LIANG Hong-Wei. Fabrication of ZnO p-n Homojunction by Ultrasonic Spray Pyrolysis and Its Electroluminescence Properties [J]. Journal of Inorganic Materials, 2007, 22(1): 173-175. |
[12] | JI Zhen-Guo,ZHAO Li-Na,HE Zuo-Peng,ZHOU Qiang,CHEN Chen. P-type Transparent Conducting Indium-Tin Oxide Thin Films Deposited by Spray-pyrolysis [J]. Journal of Inorganic Materials, 2006, 21(1): 211-216. |
[13] | ZHAO Jun-Liang,LI Xiao-Min,BIAN Ji-Ming,ZHANG Can-Yun,YU Wei-Dong,GAO Xiang-Dong. Growth Mechanism for N-doped ZnO Films Grown by Spray Pyrolysis Method [J]. Journal of Inorganic Materials, 2005, 20(4): 959-964. |
[14] | XU Zhi-Jun,CHU Rui-Qing,LI Guo-Rong,YIN Qing-Rui. Applications of Spray Pyrolysis Technique in Material Science [J]. Journal of Inorganic Materials, 2004, 19(6): 1240-1248. |
[15] | BIAN Ji-Ming,LI Xiao-Min,GAO Xiang-Dong,YU Wei-Dong. Effect of Substrate Temperature on the Deposition Process and Microstructure of ZnO Films Grown by Ultrasonic Spray Pyrolysis Method [J]. Journal of Inorganic Materials, 2004, 19(3): 641-646. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||