Journal of Inorganic Materials ›› 2013, Vol. 28 ›› Issue (2): 159-164.DOI: 10.3724/SP.J.1077.2013.12184
• Orginal Article • Previous Articles Next Articles
ZHENG Jin-Ju1,2, CAO Sheng2, GAO Feng-Mei2, WEI Guo-Dong2, JIA Long1, YANG Wei-You2
Received:
2012-03-22
Revised:
2012-06-01
Published:
2013-02-10
Online:
2013-01-23
About author:
ZHENG Jin-Ju. E-mail: zhengzhao2007@163.com
CLC Number:
ZHENG Jin-Ju, CAO Sheng, GAO Feng-Mei, WEI Guo-Dong, JIA Long, YANG Wei-You. Synthesis of Effective and Qualified Cu-doped ZnSe Quantum Dots and Their Optical Properties[J]. Journal of Inorganic Materials, 2013, 28(2): 159-164.
Add to citation manager EndNote|Ris|BibTeX
Fig. 1 Temporal evolution of UV-Visible spectra of ZnSe QDs with n(Zn):n(Se)=1:15 (a), UV-Visible (left in (b)) and PL (b) of ZnSe QDs with various precursor ratios from 1:15 to 1:5, in which the QDs were taken from the three-neck flask at 5 min after the Se precursor injected
n(Zn):n(Se) | 0.5 min | 2 min | 5 min | 10 min | 20 min |
---|---|---|---|---|---|
1:5 | 378 | 388 | 391 | 390 | 388 |
1:10 | 375 | 384 | 385 | 386 | 388 |
1:15 | 370 | 386 | 386 | 388 | 387 |
Table 1 Temporal evolution of the peak positions in UV-Visible spectra of ZnSe QDs with different n(Zn):n(Se)
n(Zn):n(Se) | 0.5 min | 2 min | 5 min | 10 min | 20 min |
---|---|---|---|---|---|
1:5 | 378 | 388 | 391 | 390 | 388 |
1:10 | 375 | 384 | 385 | 386 | 388 |
1:15 | 370 | 386 | 386 | 388 | 387 |
Fig. 2 UV-visible (a) and PL (b) spectra of ZnSe core, ZnSe:Cu 40 min, ZnSe:Cu 80 min, ZnSe:Cu/ZnSe-1, ZnSe:Cu/ZnSe-2, ZnSe:Cu/ZnSe-3, and the PL spectra (c) of ZnSe:Cu 80 min excited at 320 nm, 335 nm and 350 nm, respectively
[1] | Acharya S, Pradhan N. Insertion/ejection of dopant ions in composition tunable semiconductor nanocrystals. J. Phys. Chem. C, 2011, 115(40): 19513-19519. |
[2] | Erwin S C, Zu L, Haftel M I, et al. Doping semiconductor nanocrystals. Nature, 2005, 436(7047): 91-94. |
[3] | Nag A, Chakraborty S, Sarma D. To dope Mn2+ in a semiconducting nanocrystal. J. Am. Chem. Soc, 2008, 130(32): 10605-10611. |
[4] | Norris D, Yao N, harnock F, et al. High-quality manganese-doped ZnSe nanocrystals. Nano Lett., 2001, 1(1): 3-7. |
[5] | Zheng J J, Yuan X Y, Ikezawa M Y, et al. Efficient photoluminescence of Mn2+ ions in MnS/ZnS Core/Shell quantum dots. J. Phys. Chem. C, 2009, 113(39): 16969-16974. |
[6] | Zheng J, Ji W, Wang X.et al. Improved photoluminescence of MnS / ZnS core / shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell. J. Phys. Chem. C, 2010, 114(36): 15331-15336. |
[7] | Xie R G, Peng X G. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J. Am. Chem. Soc., 2009, 131(30): 10645-10651. |
[8] | Pradhan N, Battaglia D M, Liu Y, et al. Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett., 2007, 7(2): 312-317. |
[9] | Sarkar S, Bose R, Jana S, et al. Doped semiconductor nanocrystals and organic dyes: an efficient and greener FRET system. J. Phys. Chem. Lett., 2010, 1(3): 636-640. |
[10] | Chen J, Zheng A, Gao Y, et al. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution. Spectrochim Acta Part A: Mol. Biomol. Spectrosc., 2008, 69(3): 1044-1052. |
[11] | Pradhan N, Goorskey D, Thessing J, et al. An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc., 2005, 127(50): 17586-17587. |
[12] | Soo Y L, Ming Z H, Huang S W, et al. Local structures around Mn luminescent centers in Mn-doped nanocrystals of ZnS. Phys. Rev. B, 1994, 50(11): 7602-7607. |
[13] | Nag A, Sapra S, Nagamani C, et al. A study of Mn2+ doping in CdS nanocrystals. Chem. Mater., 2007, 19(13): 3252-3259. |
[14] | Pradhan N, Peng X. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc., 2007, 129(11): 3339-3347. |
[15] | Chang W L, Wei L, Zhen S M, et al. Posterior rotating rod reduction strategy for irreducible atlantoaxial subluxations with congenital odontoid aplasia. Spine, 2010, 35(23): 2064-2070. |
[16] | Li Dan, Liu Junye, Meng Jiwu, et al. The PL decay of Cu2+ doped ZnS nanoparticle. Chin. J. Lumin. 1998, 19(1): 85-88. |
[17] | Srivastava B B, Jana S, Pradhan N. Doping Cu in semiconductor nanocrystals: some old and some new physical insights. J. Am. Chem. Soc., 2011, 133(4): 1007-1015. |
[18] | Quan Z W, Yang D M, Li C X, et al. Multicolor tuning of manganese- doped ZnS colloidal nanocrystals. Langmuir, 2009, 25(17): 1025-1026. |
[19] | Cao L X, Zhang J H, Ren S L, et al. Luminescence enhancement of core-shell ZnS:Mn/ZnS nanoparticles. Appl. Phys. Lett., 2002, 80(23): 4300-4302. |
[20] | Karar N, Chander H, Shivaprasad S M. Enhancement of luminescent properties of ZnS: Mn nanophosphors by controlled ZnO capping. Appl. Phys. Lett., 2004, 85(21): 5058-5060. |
[21] | Yang H, Holloway P H. Efficient and photostable ZnS-passivated CdS:Mn luminescent nanocrystals. Adv. Funct. Mater., 2004, 14(2): 152-156. |
[22] | Jana S, Srivastava B B, Acharya S, et al. Prevention of photooxidation in blue-green emitting Cu doped ZnSe nanocrystals. Chem. Comm., 2010, 46(16): 2853-2855. |
[23] | Lippens P E, Lannoo M. Calculation of the band gap for small CdS and ZnS crystallites. Phys. Rev. B., 1989, 39(15): 10935-10942. |
[24] | Suyver J, Beek, T, Wuister S.et al. Luminescence of nanocrystalline ZnSe:Cu. Appl. Phys. Lett., 2001, 79(25): 4222-4224. |
[25] | Bruchez M, Moronne M, Gin, P, et al. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385): 2013-2016. |
[26] | Zheng J, Gao F, Wei G.et al. Enhanced photoluminescence of water- soluble Mn-doped ZnS quantum dots by thiol ligand exchange. Chem. Phys. Lett., 2012, 5(519/520): 73-77. |
[1] | ZHANG Tingting, WANG Fangyuan, LIU Changyou, ZHANG Guorong, LÜ Jiahui, SONG Yuchen, JIE Wanqi. Hydrothermal-sintering Preparation of Cr2+:ZnSe/ZnSe Nanotwins with Core-shell Structure [J]. Journal of Inorganic Materials, 2024, 39(4): 409-415. |
[2] | LI Qianli, LI Naixin, LI Yucheng, LIU Shenye, CHENG Shuai, YANG Guang, REN Kuan, WANG Feng, ZHAO Jingtai. Research Progress of Radio-photoluminescence Materials and Their Applications [J]. Journal of Inorganic Materials, 2023, 38(7): 731-749. |
[3] | LIU Qi, ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure [J]. Journal of Inorganic Materials, 2022, 37(8): 897-902. |
[4] | GUAN Xufeng, LI Guifang, WEI Yunge. Microstructure and Thermal Quenching Characteristics of Na1-xMxCaEu(WO4)3 (M=Li, K) Red Phosphor [J]. Journal of Inorganic Materials, 2022, 37(6): 676-682. |
[5] | ZHANG Guoqing, QIN Peng, HUANG Fuqiang. Reversible Conversion between Space-confined Lead Ions and Perovskite Nanocrystals for Confidential Information Storage [J]. Journal of Inorganic Materials, 2022, 37(4): 445-451. |
[6] | DU Aochen, DU Qiyuan, LIU Xin, YANG Yimin, XIA Chenyang, ZOU Jun, LI Jiang. Ce:YAG Transparent Ceramics Enabling High Luminous Efficacy for High-power LEDs/LDs [J]. Journal of Inorganic Materials, 2021, 36(8): 883-892. |
[7] | TIAN Jianjian, MA Xia, WANG Min, YAO Heliang, HUA Zile, ZHANG Lingxia. Sn Quantum Dots for Electrocatalytic Reduction of CO2 to HCOOH [J]. Journal of Inorganic Materials, 2021, 36(12): 1337-1342. |
[8] | SHU Mengyang, LU Jialin, ZHANG Zhijie, SHEN Tao, XU Jiayue. CsPbBr3 Perovskite Quantum Dots/Ultrathin C3N4 Nanosheet 0D/2D Composite: Enhanced Stability and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2021, 36(11): 1217-1222. |
[9] | ZHANG Zhijie,HUANG Hairui,CHENG Kun,GUO Shaoke. High Efficient Carbon Quantum Dots/BiOCl Nanocomposite for Photocatalytic Pollutant Degradation [J]. Journal of Inorganic Materials, 2020, 35(4): 491-496. |
[10] | CHEN Ting, XU Yanqiao, JIANG Weihui, XIE Zhixiang, WANG Lianjun, JIANG Wan. Ionic Liquid Assisted Microwave Synthesis of Cu-In-Zn-S/ZnS Quantum Dots and Their Application in White LED [J]. Journal of Inorganic Materials, 2020, 35(4): 439-446. |
[11] | LI Sheng-Song, ZHENG Yong-Chao, MENG Shu-Lin, WU Li-Zhu, ZHONG Jin- Yi, ZHAO Chong-Lin. Core/Shell Quantum Dots and Au Nanoparticles Assembly for Effective Detection of Nerve Agent Mimic [J]. Journal of Inorganic Materials, 2019, 34(8): 893-898. |
[12] | Yang LIU, Shan YU, Kai-Wen ZHENG, Wei-Wei CHEN, Xing-An DONG, Fan DONG, Ying ZHOU. NO Photo-oxidation and In-situ DRIFTS Studies on N-doped Bi2O2CO3/CdSe Quantum Dot Composite [J]. Journal of Inorganic Materials, 2019, 34(4): 425-432. |
[13] | YANG Ying, PAN De-Qun, ZHANG Zheng, CHEN Tian, HAN Xiao-Min, ZHANG Li-Song, GUO Xue-Yi. Photovoltaic Performance of Ag2Se Quantum Dots Co-sensitized Solid-state Dye-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2019, 34(2): 137-144. |
[14] | GAO Dong, ZHANG Yu-Liang, SUN Jing, FAN Hong-Jun. One-step Synthesis of Specific pH-responsive Carbon Quantum Dots and Their Luminescence Mechanism [J]. Journal of Inorganic Materials, 2019, 34(12): 1309-1315. |
[15] | DAI Yan-Nan, YANG Shuai, SHEN Yang, SHAN Yong-Kui, YANG Fan, ZHAO Qing-Biao. Intense Yellow Emission from Gd0.5-yTb1.5REyW3O12 (RE=Eu, Sm) Phosphors Tuned through Full Range Doping [J]. Journal of Inorganic Materials, 2019, 34(11): 1210-1216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||