Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (2): 137-144.DOI: 10.15541/jim20180233
Special Issue: 光伏材料
• RESEARCH PAPER • Previous Articles Next Articles
YANG Ying1, 2, 3, PAN De-Qun1, 2, 3, ZHANG Zheng1, 2, 3, CHEN Tian1, 2, 3, HAN Xiao-Min1, ZHANG Li-Song1, GUO Xue-Yi1, 2, 3
Received:
2018-05-17
Revised:
2018-09-20
Published:
2019-02-20
Online:
2019-01-24
About author:
YANG Ying. E-mail: muyicaoyang@csu.edu.cn
Supported by:
CLC Number:
YANG Ying, PAN De-Qun, ZHANG Zheng, CHEN Tian, HAN Xiao-Min, ZHANG Li-Song, GUO Xue-Yi. Photovoltaic Performance of Ag2Se Quantum Dots Co-sensitized Solid-state Dye-sensitized Solar Cells[J]. Journal of Inorganic Materials, 2019, 34(2): 137-144.
Fig. 1 (a)Transmission electron microscope (TEM) image, (b) size distribution histogram, (c) HRTEM image, and (d) zoom-in HRTEM image of the Ag2Se quantum dots
Fig. 3 (a) UV-Vis spectra of photoanodes with different Ag2Se QDs sensitization methods with inset showing photographs of photoandes, and (b) J-V curve of DSSCs with different sensitization methods
Sample | Jsc/(mA∙cm-2) | Voc/V | FF | ƞ/% |
---|---|---|---|---|
TiO2/dye | 8.78 | 0.69 | 0.50 | 2.96 |
TiO2/dye/QDs | 8.08 | 0.71 | 0.48 | 2.74 |
TiO2/QDs/dye | 9.18 | 0.74 | 0.53 | 3.59 |
Table 1 Photovoltaic parameters of DSSCs with different sensitized methods
Sample | Jsc/(mA∙cm-2) | Voc/V | FF | ƞ/% |
---|---|---|---|---|
TiO2/dye | 8.78 | 0.69 | 0.50 | 2.96 |
TiO2/dye/QDs | 8.08 | 0.71 | 0.48 | 2.74 |
TiO2/QDs/dye | 9.18 | 0.74 | 0.53 | 3.59 |
Fig. 6 (a) UV-Vis absorption spectra of Ag2Se QDs sensitized, N719 sensitized and Ag2Se QDs/N719 co-sensitized photoanodes, and (b) UV-Vis absorption spectra of photoanodes with different sensitization time of Ag2Se QDs
Sample | Jsc/(mA∙cm-2) | Voc/V | FF | ƞ /% |
---|---|---|---|---|
TiO2/QDs(2 h) | 0.44 | 0.41 | 0.55 | 0.10 |
TiO2/dye | 8.78 | 0.69 | 0.50 | 2.96 |
TiO2/QDs(1 h)/dye | 9.18 | 0.74 | 0.53 | 3.59 |
TiO2/QDs(2 h)/dye | 9.53 | 0.75 | 0.55 | 3.97 |
TiO2/QDs(3 h)/dye | 9.46 | 0.73 | 0.55 | 3.82 |
TiO2/QDs(4 h)/dye | 8.69 | 0.75 | 0.56 | 3.68 |
TiO2/QDs(5 h)/dye | 7.69 | 0.74 | 0.55 | 3.10 |
Table 2 Photovoltaic parameters of co-sensitized solar cells with different Ag2Se QDs sensitization time
Sample | Jsc/(mA∙cm-2) | Voc/V | FF | ƞ /% |
---|---|---|---|---|
TiO2/QDs(2 h) | 0.44 | 0.41 | 0.55 | 0.10 |
TiO2/dye | 8.78 | 0.69 | 0.50 | 2.96 |
TiO2/QDs(1 h)/dye | 9.18 | 0.74 | 0.53 | 3.59 |
TiO2/QDs(2 h)/dye | 9.53 | 0.75 | 0.55 | 3.97 |
TiO2/QDs(3 h)/dye | 9.46 | 0.73 | 0.55 | 3.82 |
TiO2/QDs(4 h)/dye | 8.69 | 0.75 | 0.56 | 3.68 |
TiO2/QDs(5 h)/dye | 7.69 | 0.74 | 0.55 | 3.10 |
Fig. 8 (a) Electrochemical impedance plots of co-sensitized solar cells with different Ag2Se QDs sensitization time with inset showing the equivalent circuit, and (b) the recombination resistance R2 of DSSCs as a function of different Ag2Se QDs sensitization time
Sample | τd/ms | τc/ms | Dn/ (cm2·s-1) | Ln/μm | ηcc |
---|---|---|---|---|---|
TiO2/dye | 31.77 | 8.45 | 7.25 | 15.18 | 0.73 |
TiO2/QDs(1 h)/dye | 33.65 | 8.45 | 7.25 | 15.62 | 0.75 |
TiO2/QDs(2 h)/dye | 42.37 | 7.98 | 7.68 | 18.04 | 0.81 |
TiO2/QDs(3 h)/dye | 42.37 | 8.45 | 7.25 | 17.52 | 0.80 |
TiO2/QDs(4 h)/dye | 31.77 | 7.53 | 8.14 | 16.07 | 0.76 |
TiO2/QDs(5 h)/dye | 23.83 | 8.45 | 7.25 | 13.14 | 0.65 |
Table 3 IMPS/VS kinetic parameters of co-sensitized solar cells with different Ag2Se QDs sensitization time
Sample | τd/ms | τc/ms | Dn/ (cm2·s-1) | Ln/μm | ηcc |
---|---|---|---|---|---|
TiO2/dye | 31.77 | 8.45 | 7.25 | 15.18 | 0.73 |
TiO2/QDs(1 h)/dye | 33.65 | 8.45 | 7.25 | 15.62 | 0.75 |
TiO2/QDs(2 h)/dye | 42.37 | 7.98 | 7.68 | 18.04 | 0.81 |
TiO2/QDs(3 h)/dye | 42.37 | 8.45 | 7.25 | 17.52 | 0.80 |
TiO2/QDs(4 h)/dye | 31.77 | 7.53 | 8.14 | 16.07 | 0.76 |
TiO2/QDs(5 h)/dye | 23.83 | 8.45 | 7.25 | 13.14 | 0.65 |
[1] | XIE Y S, TANG Y Y, WU W J,et al. Porphyrin cosensitization for a photovoltaic efficiency of 11.5%: a record for non-ruthenium solar cells based on iodine electrolyte. J. Am. Chem. Soc., 2015, 137(44): 14055-14058. |
[2] | MATHEW S, YELLA A, GAO P,et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem., 2014, 6(3): 242-247. |
[3] | OZAWA H, YU O, ARAKAWA H.Dependence of the efficiency improvement of black-dye based dye-sensitized solar cells on alkyl chain length of quaternary ammonium cations in electrolyte solutions.Chem. Phys. Chem., 2014, 15(6): 1201-1206. |
[4] | KAKIAGE K, AOYAMA Y, YANO T,et al. Fabrication of a high-performance dye-sensitized solar cell with 12.8% conversion efficiency using organic silyl-anchor dyes. Chem. Commun., 2015, 51(29): 6315-6317. |
[5] | YU W W, PENG X G.Formation of high quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers.Angew. Chem. Int. Ed., 2002, 41(13): 2368-2371. |
[6] | SARMA D D, NAG A, SANTRA P K,et al. Origin of the enhanced photoluminescence from semiconductor CdSeS nanocrystals. J. Phys. Chem. Lett., 2010, 1(14): 2149-2153. |
[7] | SEOL M, KIM H, TAK Y,et al. Novel nanowire array based highly efficient quantum dot sensitized solar cell. Chem. Commun., 2010, 46(30): 5521-5523. |
[8] | ELLINGSON R J, BEARD M C, JOHNSON J C,et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett., 2005, 5(5): 865-871. |
[9] | SCHALLER R D, AGRANOVICH V M, KLIMOV V I.High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nat. Phys., 2005, 1(3): 189-194. |
[10] | DU J, DU Z, HU J S,et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc., 2016, 138(12): 4201-4209. |
[11] | JI G, LIU Z, GUAN D,et al. Ag2S quantum dots and N3 dye co-sensitized TiO2, nanotube arrays for a solar cell. Appl. Surf. Sci., 2013, 282(10): 695-699. |
[12] | LIU Y, WANG J.Co-sensitization of TiO2, by PbS quantum dots and dye N719 in dye-sensitized solar cells.Thin Solid Films., 2010, 518(24): E54-E56. |
[13] | YANG Y, GAO J, ZHANG Z,et al. Black phosphorus based photocathodes in wide band bifacial dye-sensitized solar cells. Adv. Mater., 2016, 28(40): 8937-8944. |
[14] | GUO X Y, GAO J, ZHANG Z,et al. Highly efficient interfacial layer using SILAR derived Ag2S quantum dots for solid-state bifacial dye-sensitized solar. Mater. Today Energy, 2017, 5: 320-330. |
[15] | GIMENEZ S, LANA-VILLARREAL T, GOMEZ R, et al. Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells: correlation between cell performance and structural properties. J. Appl. Phys., 2010, 108(6): 064310-1-7. |
[16] | SCHOEN D T, XIE C, CUI Y.Electrical switching and phase transformation in silver selenide nanowires.J. Am. Chem. Soc., 2007, 129(14): 4116-4117. |
[17] | SAHU A, BRAGA D, WASER O,et al. Solid-phase flexibility in Ag2Se semiconductor nanocrystals. Nano Lett., 2014, 14(1): 115-121. |
[18] | ZHU C N, JIANG P, ZHANG Z L,et al. Ag2Se quantum dots with tunable emission in the second near-infrared window. ACS Appl. Mater. Interfaces, 2013, 5(4): 1186-1189. |
[19] | ZHANG Z, YANG Y, GAO J,et al. Highly efficient Ag2Se quantum dots blocking layer for solid-state dye-sensitized solar cells: size effects on device performances. Mater. Today Energy, 2018, 7: 27-36. |
[20] | YANG Y, YI P, ZHOU C,et al. Magnetic field processed solid- state dye-sensitized solar cells with nickel oxide modified agarose electrolyte. J. Power Sources, 2013, 243(6): 919-924. |
[21] | YANG Y, ZHANG Z, GAO J,et al. Metal-organic materials as efficient additives in polymer electrolytes for quasi-solid-state dye-sensitized solar cells. J. Alloy. Compd., 2017, 726: 1286-1294. |
[22] | TIAN Q, DENG D, ZHANG Z,et al. Facile synthesis of Ag2Se quantum dots and their application in dye/Ag2Se co-sensitized solar cells. J. Mater. Sci., 2017, 52(20): 12131-12140. |
[23] | GU Y P, CUI R, ZHANG Z L,et al. Ultrasmall near-infrared Ag2Se quantum dots with tunable fluorescence for in vivo imaging. J. Am. Chem. Soc., 2012, 134(1): 79-82. |
[24] | PEJOVA B, NAJDOSKI M, GROZDANOV I,et al. Chemical bath deposition of nanocrystalline (111) textured Ag2Se thin films. Mater. Lett., 2000, 43(5/6): 269-273. |
[25] | ANTHONY, PHILIP S.Synthesis of Ag2S and Ag2Se nanoparticles in self assembled block copolymer micelles and nano-arrays fabrication.Mater Lett., 2009, 63(9): 773-776. |
[26] | SIBIYA P N, MOLOTO M J.Effect of precursor concentration and pH on the shape and size of starch capped silver selenide (Ag2Se) nanoparticles.Chalcogenide Lett., 2014, 11(11): 577-588. |
[27] | LEE K E, GOMEZ M A, ELOUATIK S,et al. Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir, 2010, 26(12): 9575-9583. |
[28] | LUO J, WEI H, HUANG Q,et al. Highly efficient core-shell CuInS-Mn doped CdS quantum dot sensitized solar cells. Chem. Comm., 2013, 49(37): 3881-3883. |
[29] | HU X, ZHANG Q X, HUANG X M,et al. Aqueous colloidal CuInS2 for quantum dot sensitized solar cells. J. Mater. Chem., 2011, 21(40): 15903-15905. |
[30] | CUI C, QIU Y W, ZHAO J H,et al. A comparative study on the quantum-dot-sensitized, dye-sensitized and co-sensitized solar cells based on hollow spheres embedded porous TiO2 photoanodes. Electrochim. Acta, 2015, 173: 551-558. |
[31] | REN F M, LI S J, HE C L.Electrolyte for quantum dot-sensitized solar cells assessed with cyclic voltammetry.Sci. China-Mater., 2015, 58(6): 490-495. |
[32] | SHALOM M, DOR S, RUHLE S,et al. Core CdS quantum dot/shell mesoporous solar cells with improved stability and efficiency using an amorphous TiO2 coating. J. Phys. Chem. C, 2009, 11(9): 3895-3898. |
[33] | SERO I M, BISQUERT J.Breakthroughs in the development of semiconductor-sensitized solar cells.J. Phys. Chem. Lett., 2010, 1(20): 3046-3052. |
[34] | LAN Z, WU W X, ZHANG S,et al. An efficient method to prepare high-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays and TiO2 quantum dot blocking layers. J. Phys. Chem. C., 2016, 20(10): 2643-2650. |
[35] | LI J, LI Z, WANG S,et al. Great improvement of photoelectric property from co-sensitization of TiO2 electrodes with CdS quantum dots and dye N719 in dye-sensitized solar cells. Mater. Res. Bull., 2013, 48(7): 2566-2570. |
[36] | XU B, WU J H, ZHANG X K,et al. The influence of blocking layer on the photovoltaic properties of dye-sensitized solar cells. Journal of Function Materials, 2008, 39: 1703-1709. |
[37] | LELII C, BAWENDI M G, BIAGINI P,et al. Enhanced photovoltaic performance with co-sensitization of quantum dots and an organic dye in dye-sensitized solar cells. J. Mater. Chem. A, 2014, 2: 18375-18382. |
[38] | GAO J, YANG Y, ZHANG Z,et al. Bifacial quasi-solid-state dye-sensitized solar cells with poly (vinyl pyrrolidone)/polyaniline transparent counter electrode. Nano Energy, 2016, 26: 123-130. |
[39] | ELBOHY H, THAPA A, POUDEL P,et al. Vanadium oxide as new charge recombination blocking layer for high efficiency dye-sensitizedsolar cells. Nano Energy, 2015, 13: 368-375. |
[40] | YANG Y, WANG W.Effects of incorporating PbS quantum dots in perovskite solar cells based on CH3NH3PbI3.J. Power Sources, 2015, 293: 577-584. |
[41] | LAGEMAAT J V D, FRANK A J. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies.J. Phys. Chem. B, 2001, 105(45): 11194-11205. |
[42] | OEKERMANN T, ZHANG D, YOSHIDA T,et al. Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J. Phys. Chem. B, 2004, 108(7): 2227-2235. |
[43] | ZHU K, NEALE N R, MIEDANER A,et al. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett., 2007, 7(1): 69-74. |
[1] | CHENG Hou-Yan, LUO Jun, HUANG Li-Qun, LI Jia-Ke, YANG Zhi-Sheng, GUO Ping-Chun, WANG Yan-Xiang, ZHANG Qi-Feng. Preparation of Flexible Dye-sensitized Solar Cells Based on Hierarchical Structure ZnO Nanosheets [J]. Journal of Inorganic Materials, 2018, 33(5): 507-514. |
[2] | LIU Yong-Qiang, HUANG Hao, ZHAI Jin-Sheng, MA Meng-Jun, FAN Jia-Jie. Graphene Quantum Dots/CdS/CdSe Co-Sensitized Solar Cells [J]. Journal of Inorganic Materials, 2017, 32(10): 1042-1048. |
[3] | RAN Hui-Li, HUANG Hao, MA Meng-Jun, ZHAI Jin-Sheng, FAN Jia-Jie. Dye-sensitized Solar Cells Based on Double-layer Composite Film with Enhanced Photovoltaic Performance [J]. Journal of Inorganic Materials, 2017, 32(10): 1049-1054. |
[4] | YIN Yue-Feng, LIANG Gui-Jie, ZHANG Qiang, PAN Zheng, LI Wang-Nan, LI Zai-Fang. Optimization of Dye-sensitized Solar Cells Prepared by Pechini Sol-Gel Method [J]. Journal of Inorganic Materials, 2016, 31(7): 739-744. |
[5] | ZHANG Chen-Le, ZHANG Pei-Xin, YUN Si-Ning, LI Yong-Liang, HE Ting-Shu. Recent Progress on Preparation of Transition Metal Compounds as Counter Electrodes for Dye-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2016, 31(2): 113-122. |
[6] | XIE Shou-Dong, WANG Gang, CHEN Hui-Yuan, LIN Hong, YAN Zhi-Nan, ZHANG Hui. Lycium ruthenicum Murray and Graphene Nanoplates for Dye Sensitized Solar Cell [J]. Journal of Inorganic Materials, 2016, 31(10): 1117-1122. |
[7] | HU Xue-Mei, GU Zheng-Ying, LI Xiao-Min, GAO Xiang-Dong, SHI Ying. Hybrid Photoanodes Based on Nanoporous Lithium Titanate Nanostructures in Dye-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2015, 30(10): 1037-1042. |
[8] | TANG Bei-Bei, GUO Ming-Xing, JIANG Wei, YIN Shu-Hui, ZHANG Man-Xia, WANG Liang, ZHANG Yi-Ming, ZHENG Lei, MENG Yue-Qi. Zinc Molybdate-carbon Composites as Counter Electrode Materials for Dye-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2014, 29(11): 1133-1138. |
[9] | WANG Gui-Qiang, WANG De-Long, KUANG Shuai, ZHUO Shu-Ping . Research Progress on Transition Metal Compound Used as Highly Efficient Counter Electrode of Dye-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2013, 28(9): 907-915. |
[10] | LUO Hua-Ming, LIU Zhi-Yong, BAI Chuan-Yi, LU Yu-Ming, CAI Chuan-Bing. TiO2 Nanotube Based Dye-sensitized Photoanode [J]. Journal of Inorganic Materials, 2013, 28(5): 521-526. |
[11] | CUI Xu-Mei, ZUO Cheng-Yang, LAN De-Jun, WANG Jun. Preparation and Electrical Properties of TiO2/SnO2 Nanocrystalline Films [J]. Journal of Inorganic Materials, 2013, 28(11): 1233-1236. |
[12] | ZHU Xin-Bo, FANG Xiao-Dong, DENG Zan-Hong, DONG Wei-Wei, WANG Shi-Mao, SHAO Jing-Zhen, HU Lin-Hua, ZHU Jun. Effects of Hydrothermal Growth Conditions of ZnO Nanorods Arrays on Flexible Dye-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2012, 27(7): 775-779. |
[13] | ZHANG Qing-Hong. Progress on TiO2-based Nanomaterials and Its Utilization in the Clean Energy Technology [J]. Journal of Inorganic Materials, 2012, 27(1): 1-10. |
[14] | ZHOU Wen-Qian, LU Yu-Ming, CHEN Chang-Zhao, LIU Zhi-Yong, CAI Chuan-Bing. Effect of Li-doped TiO2 Compact Layers for Dye Sensitized Solar Cells [J]. Journal of Inorganic Materials, 2011, 26(8): 819-822. |
[15] | HUANG Yi-Min, LIU Zhi-Yong, WANG Xiao-Qi, LU Yu-Ming, CAI Chuan-Bing. Tandem Dye-sensitized Solar Cell Based on Metal Mesh [J]. Journal of Inorganic Materials, 2011, 26(7): 774-778. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||