Journal of Inorganic Materials ›› 2011, Vol. 26 ›› Issue (1): 1-11.DOI: 10.3724/SP.J.1077.2011.00001
• Invited Review • Next Articles
LIU Xuan-Yong
Received:
2010-10-22
Revised:
2010-10-26
Published:
2011-01-20
Online:
2010-12-23
Supported by:
Shanghai Nano Science and Technology Special Project (0952nm04400); International Science and Technology Cooperation Fund of Shanghai (09520715200); National Nature Science Foundation of China (51071168)
CLC Number:
LIU Xuan-Yong. Progress in Research on the Surface/Interface of Materials for Hard Tissue Implant[J]. Journal of Inorganic Materials, 2011, 26(1): 1-11.
Add to citation manager EndNote|Ris|BibTeX
[1] Jones F H. Teeth and bones: application of surface sciences to dental materials and related materials. Surf. Sci. R, 2001, 42(3/4/5): 75-205. [2] Hench L L. Biomaterials. Science, 1980, 208(4446): 826-831. [3] Hench L L, Wilson J. Surface-active biomaterials. Science, 1984, 226(4675): 630-636. [4] Balasundaram G, Webster T J. A perspective on nanophase materials for orthopedic implant applications. J. Mater. Chem., 2006, 16(38): 3737-3745. [5] Shi Z, Neoh K G, Kang E T, et al. Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration. Biomacromolecules, 2009, 10(6): 1603-1611. [6] Hench L L, Polak J M. Third-generation biomedical materials. Science, 2002, 295(5557): 1014-1017. [7] Leeuwenburgh S C G, Jansen J A, Malda J, et al. Trends in biomaterials research: an analysis of the scientific programme of the World Biomaterials Congress 2008. Biomaterials, 2008, 29(21): 3047-3052. [8] Burns J W. Biology takes centre stage. Nat. Mater., 2009, 8(6): 441-443. [9] Kirkpatrick C J, Fuchs S, Peters K, et al. Visions for regenerative medicine: interface between scientific fact and science fiction. Artif. Organs, 2006, 30(10): 822-827. [10] 冯 波, 翁 杰, 屈树新, 等(FENG Bo, et al). 医用钛表面纳米结构化改性. 稀有金属材料与工程(Rare Metal Mat. Eng.,), 2007, 36(10): 1693-1697. [11] Boyan B D, Kinney R C, Singh K, et al. Bone Morphogenetic Proteins and Other Bone Growth Factors, in Musculoskeletal Tissue Regeneration: Biological Materials and Methods. W.S. Pietrzak edited, Humana Press, 2008: 225-245 [12] Spagnoli A, Granero-Molto F, Weis J. Stem cells and fracture repair. Bone, 2009, 44(S1): S18-S55. [13] Liu X, Chu P K, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R, 2004, 47(3/4): 49-121. [14] Storrie H, Stupp S I. Cellular response to zinc-containing organoapatite: an in vitro study of proliferation, alkaline phosphatase activityand biomineralization. Biomaterials, 2005, 26(27): 5492-5499. [15] Alkhraisat M H, Moseke C, Blanco L, et al. Strontium modified biocements with zero order release kinetics. Biomaterials, 2008, 29(35): 4691-4697. [16] Luthen F, Bulnheim U, Muller P D, et al. Influence of manganese ions on cellular behavior of human osteoblasts in vitro. Biomol. Eng., 2007, 24(5): 531-536. [17] Amelio P D, Cristofaro M A, Tamone C, et al. Role of iron metabolism and oxidative damage in postmenopausal bone loss. Bone, 2008, 43(6): 1010-1015. [18] 张方晨, 刘浩宇, 刘锡仪. 骨的微量元素代谢. 广东微量元素科学, 2005, 12(1): 1-7. [19] Ebert R, Jakob F. Selenium Deficiency as a Putative Risk Factor for Osteoporosis. International Congress Series, 2007, 1297: 158-164. [20] Inoue K, Matsuda K, Itoh M, et al. Osteopenia and male-specific sudden cardiac death in mice lacking a zinc transporter gene, Znt5. Hum. Mol. Genet., 2002, 11(15): 1775-1784. [21] Fahmy M A, Hassan N H A, Farghaly A A, et al. Studies on the genotoxic effect of beryllium chloride and the possible protective role of selenium/vitamins A, C and E. Mut. Res., 2008, 652(2): 103-111. [22] Shi Z, Neoh K G, Kang E T, et al. Titanium with surface-grafted dextran and immobilized bone morphogenetic protein-2 for inhibition of bacterial adhesion and enhancement of osteoblast functions. Tissue Eng. A, 2009, 15(2): 417-426. [23] Hu J F, Garo E, Goering M G, et al. Bacterial biofilm inhibitors from diospyros dendo. J. Nat. Prod., 2006, 69(1): 118-120. [24] Hetrick E M, Shin J H, Paul H S, et al. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials, 2009, 30(14): 2782-2789. [25] Wan Y Z, Raman S, He F, et al. Surface modification of medical metals by ion implantation of silver and copper. Vacuum, 2007, 81(9): 1114-1118. [26] WanY Z, Xiong G Y, Luo H L, et al. Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium–calcium alloys. Appl. Surf. Sci., 2008, 254(17): 5514-5516. [27] Hetrick E M, Schoenfisch M H. Reducing implant-related infections: active release strategies. Chem. Soc. Rev., 2006, 35(9): 780-789. [28] Johannsson B, Callaghan J J. Prosthetic hip infection due to cryptococcus neoformans: case report. Diagn. Micro. Infec. Dis., 2009, 64(1): 76-79. [29] Ochoa R A T, Mow C S. Deep infection of a total knee implant as a complication of disseminated pneumococcal sepsis: a case report and review of literature. The Knee, 2008, 15(2): 144-147. [30] Brady R A, Calhoun J H, Leid J G, et al. Infections of Orthopaedic Implants and Devices. In: Shirtliff M, Leid J G, Springer series on biofilms V3. Berlin Heidelberg: Springer-Verlag, 2009: 15-55. [31] Mahomed N N, Barrett J A, Katz J N, et al. Rates and outcomes of primary and revision total hip replacement in the United States Medicare population. J. Bone Joint Surg. Am., 2003, 85A(1): 27-32. [32] Ridgeway S, Wilson J, Charlet A, et al. Infection of the surgical site after arthroplasty of the hip. J. Bone Joint Surg. Br., 2005, 87(6): 844-850. [33] Kelm J, Schmitt E, Anagnostakos K. Vacuum-assisted closure in the treatment of early hip joint infections. Int. J. Med. Sci., 2009, 6(5): 241-246 [34] Segawa H, Tsukayama D T, Kyle R F, et al. Infection after total knee arthroplasty. J. Bone Joint Surg. Am., 1999, 81(10): 1434-1445. [35] Mahomed N N, Barrett J, Katz J N, et al. Epidemiology of total knee replacement in the United States Medicare population. J. Bone Joint Surg. Am., 2005, 87(6): 1222-1228. [36] Carlile G S, Elvy J, Toms A D. Salmonella infection of a total knee replacement. The Knee, 2010, 17(5): 356-358. [37] Meehan J, Jamal A A, Nguyen H. Prophylactic antibiotics in hip and knee arthroplasty. J. Bone Joint Surg. Am., 2009, 91(10): 2480-2490. [38] Lantry J M, Roberts C S, Giannoudis P V. Operative treatment of scapular fractures: a systematic review. Injury, 2008, 39(3): 271-283. [39] Cheung E V, Sperling J W, Cofield R H. Infection associated with hematoma formation after shoulder arthroplasty. Clin. Orthop. Relat. Res., 2008, 466(6):1363-1367. [40] Randelli P, Castagna A, Cabitza F, et al. Infectious and thromboembolic complications of arthroscopic shoulder surgery. J. Shoulder Elbow Surg., 2010, 19(1): 97-101. [41] Linberg C J, Sperling J W, Schleck C D, et al. Shoulder arthroplasty in morbidly obese patients. J. Shoulder Elbow Surg., 2009, 18(6): 903-906. [42] Iyengar K P, Gudena R, Chitgopkar S D, et al. Primary septic arthritis of the acromio-clavicular joint: case report and review of literature. Arch. Orthop. Trauma. Surg., 2009, 129(1): 83-86. [43] Olsen M A, Nepple J J, Riew K D, et al. Risk factors for surgical site infection following orthopaedic spinal operations. J. Bone Joint Surg. Am., 2008, 90(1): 62-69. [44] Olsen M A, Mayfield J, Lauryssen C, et al. Risk factors for surgical site infection in spinal surgery. J. Neurosurg., 2003, 98(S2): 149-155. [45] Jeon D W, Chang B S, Jeung U O, et al. A case of postoperative tuberculous spondylitis with a bizarre course. Clin. Orthop. Surg., 2009, 1(1): 58-62. [46] Nazhat S N, Young A M, Pratten J. Sterility and Infection. In: Narayan R, Biomedical Materials. New York: Springer, 2009: 239-260. [47] Moriarty T F, Schlegel U, Perren S, et al. Infection in fracture fixation: can we influence infection rates through implant design. J. Mater. Sci: Mater. Med., 2010, 21(3): 1031-1035. [48] Darouiche R O. Treatment of infections associated with surgical implants. N. Engl. J. Med., 2004, 350(14): 1422-1429. [49] |
[1] | WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383-389. |
[2] | LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite [J]. Journal of Inorganic Materials, 2024, 39(3): 313-320. |
[3] | ZHANG Zhimin, GE Min, LIN Han, SHI Jianlin. Novel Magnetoelectric Catalytic Nanoparticles: RNS Release and Antibacterial Efficiency [J]. Journal of Inorganic Materials, 2024, 39(10): 1114-1124. |
[4] | ZHANG Shumin, XI Xiaowen, SUN Lei, SUN Ping, WANG Deqiang, WEI Jie. Sonodynamic and Enzyme-like Activities of Niobium-based Coatings: Antimicrobial, Cell Proliferation and Cell Differentiation [J]. Journal of Inorganic Materials, 2024, 39(10): 1125-1134. |
[5] | ZHAO Rui, MAO Fei, QIAN Hui, YANG Xiao, ZHU Xiangdong, ZHANG Xingdong. Micro-/Nano-structured Biomaterials for Bone Regeneration: New Progress [J]. Journal of Inorganic Materials, 2023, 38(7): 750-762. |
[6] | SHANGGUAN Li, NIE Xiaoshuang, YE Kuicai, CUI Yuanyuan, QIAO Yuqin. Effects of Surface Wettability of Titanium Oxide Coatings on Osteoimmunomodulatory Properties [J]. Journal of Inorganic Materials, 2023, 38(12): 1457-1565. |
[7] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[8] | DU Jiaheng, FAN Xinli, XIAO Dongqin, YIN Yiran, LI Zhong, HE Kui, DUAN Ke. Electrophoretic Coating of Magnesium Oxide on Microarc-oxidized Titanium and Its Biological Properties [J]. Journal of Inorganic Materials, 2023, 38(12): 1441-1448. |
[9] | WU Xuetong, ZHANG Ruofei, YAN Xiyun, FAN Kelong. Nanozyme: a New Approach for Anti-microbial Infections [J]. Journal of Inorganic Materials, 2023, 38(1): 43-54. |
[10] | SHENG Lili, CHANG Jiang. Photo/Magnetic Thermal Fe2SiO4/Fe3O4 Biphasic Bioceramic and Its Composite Electrospun Membrane: Preparation and Antibacterial [J]. Journal of Inorganic Materials, 2022, 37(9): 983-990. |
[11] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[12] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[13] | FU Jiajun, SHEN Tao, WU Jia, WANG Chen. Nanozyme: a New Strategy Combating Bacterial [J]. Journal of Inorganic Materials, 2021, 36(3): 257-268. |
[14] | GUO Xiaowei, LI Yuyan, CHEN Nanchun, WANG Xiuli, XIE Qinglin. Construction of Sustainable Release Antimicrobial Microspheres Loaded with Potassium Diformate [J]. Journal of Inorganic Materials, 2021, 36(2): 181-187. |
[15] | ZHANG Dawei, ZHU Liyuan, LU Hongliang, WANG Zuolin. Titanium Modified with ZnO Nanofilm and Fibronectin: Preventing Peri-implantitis and Biocompatibility [J]. Journal of Inorganic Materials, 2021, 36(12): 1316-1322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||