[1] Zhang Q H. Progress on TiO2-based nanomaterials and its utilization in the clean energy technology. Journal of Inorganic Materials, 2012, 27(1): 1-10.[2] Kowalska E, Mahaney O O P, Abe R, et al. Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. Phys. Chem. Chem. Phys., 2010, 12(10): 2344-2355.[3] Su L C, Chu C L, Dong Y S, et al. N-doped TiO2 immobilized on Nickel foam and its photocatalytic performance for formaldehyde degradation under visible light. Journal of Inorganic Materials, 2010, 25(7): 753-757.[4] Lin X X, Rong F, Ji X, et al. Carbon-doped mesoporous TiO2 film and its photocatalytic activity. Microporous Mesoporous Mater., 2011, 142: 276-281.[5] Xiong Z G, Zhao X S. Nitrogen-doped titanate-anatase core-shell nanobelts exposed ﹛101﹜anatase facets and enhanced visible light photocatalytic activity. J. Am. Chem. Soc., 2012, 134(13): 5754-5757.[6] Yang G D, Yan Z F, Xiao T C. Low-temperature solvothermal synthesis of visible-light-responsive S-doped TiO2 nanocrystal. Appl. Surf. Sci., 2012, 258(8): 4016-4022.[7] Han X P, Shao G S. Electronic properties of rutile TiO2 with nonmetal dopants from first principles. J. Phys. Chem. C, 2011, 115: 8274-8282.[8] Li D, Haneda H, Hishita S. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J. Fluorine Chem., 2005, 126(1): 69-77.[9] Li D, Haneda H, Hishita S. Visible-light-driven N-F-codoped TiO2 photocatalysts. 1. synthesis by spray pyrolysis and surface characterization. Chem. Mater., 2005, 17(10): 2588-2595.[10] Xu J J, Ao Y H, Fu D G, et al. Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light. Appl. Surf. Sci., 2008, 254(10): 3033-3038.[11] Yu J C, Yu J G, Ho W K, et al. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater., 2002, 14(9): 3808-3816.[12] Li Y J, Zhou X M, Chen W, et al. Photodecolorization of Rhodamine B on tungsten-doped TiO2/activated carbon under visible-light irradiation. J. Hazard. Mater., 2012, 227-228: 25-33.[13] He Z, Yang S G, Ju Y M, et al. Microwave photocatalytic degradation of Rhodamine B using TiO2 supported on activated carbon: mechanism implication. J. Environ. Sci., 2009, 21: 268-272.[14] Wang X J, Hu Z H, Chen Y J. A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Appl. Surf. Sci., 2009, 255: 3953-3958.[15] Huang H, Jiang Z P, Yang H W, et al. Synthesis of a kind of photocatalyst carried by magnetic particle by Sol-Gel method. Techniques and Equipment for Environmental Pollution Control, 2004, 5(1): 65-68.[16] Ao Y H, Xu J J, Fu D G, et al. A novel magnetically separable composite photocatalyst: titania-coated magnetic activated carbon. Sep. Purif. Technol., 2008, 61: 436-441.[17] Xu C K, Killmeyer R, Gray M L, et al. Enhanced carbon doping of n-TiO2 thin films for photoelectrochemical water splitting. Electrochem. Commun., 2006, 8(10): 1650-1654.[18] He Y, Bai F F, He P, et al. Research on preparation and electric properties of F-doped tin oxide nanopowder. Electronic Components and Materials, 2007, 26(4): 1-3.[19] Asahi R, Morikawa T, Ohwaki T. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269-271.[20] Ho W, Yu J C, Lee S. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity. Chem. Commun., 2006, 10: 1115-1117.[21] Pan J H, Zhang X, Du A J, et al. Self-etching reconstruction of hierachically mesoporous F-TiO2 hollow microspherical photocatalyst for concurrent membrane water purifications. J. Am. Chem. Soc., 2008, 130(34): 11256.[22] Lin X X, Rong F, Ji X, et al. Fabrication and enhanced visible light photocatalytic activity of fluorine doped TiO2 by loaded with Ag. J. Nanosci. Nanotechnol., 2011, 11: 1-6.[23] Li D, Haneda H, Labhsetwar N K, et al. Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies. Chem. Phys. Lett., 2005, 401: 579-584. |