Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (5): 502-508.DOI: 10.15541/jim20180338
Special Issue: 离子电池材料
Previous Articles Next Articles
Shi-Qiang LUO,Chun-Man ZHENG(),Wei-Wei SUN,Wei XIE,Jian-Huang KE,Shuang-Ke LIU,Xiao-Bin HONG,Yu-Jie LI,Jing XU
Received:
2018-07-23
Revised:
2018-11-26
Published:
2019-05-20
Online:
2019-05-14
Supported by:
CLC Number:
Shi-Qiang LUO, Chun-Man ZHENG, Wei-Wei SUN, Wei XIE, Jian-Huang KE, Shuang-Ke LIU, Xiao-Bin HONG, Yu-Jie LI, Jing XU. Controllable Preparation of Co-NC Nanoporous Carbon Derived from ZIF-67 for Advanced Lithium-sulfur Batteries[J]. Journal of Inorganic Materials, 2019, 34(5): 502-508.
Fig. 2 (a,c) SEM and (b,d) TEM images of (a-b) ZIF-67 precursors and (c-d) Co-NC (48 h); (e) TEM image and (f) EDS elemental mappings of S/Co-NC (48 h) composite
Sample | BET surface area/(m2?g-1) | Pore diameter /nm | Pore volume /(cm3?g-1) |
---|---|---|---|
ZIF-67 | 1481.22 | 1.9919 | 0.7252 |
Co-NC(0 h) | 272.15 | 8.2433 | 0.5608 |
Co-NC(6 h) | 301.73 | 8.7121 | 0.6571 |
Co-NC(24 h) | 344.41 | 9.6929 | 0.7016 |
Co-NC(48 h) | 360.50 | 9.7984 | 0.8124 |
Table 1 BET results of ZIF-67 and Co-NC composites
Sample | BET surface area/(m2?g-1) | Pore diameter /nm | Pore volume /(cm3?g-1) |
---|---|---|---|
ZIF-67 | 1481.22 | 1.9919 | 0.7252 |
Co-NC(0 h) | 272.15 | 8.2433 | 0.5608 |
Co-NC(6 h) | 301.73 | 8.7121 | 0.6571 |
Co-NC(24 h) | 344.41 | 9.6929 | 0.7016 |
Co-NC(48 h) | 360.50 | 9.7984 | 0.8124 |
Fig. 4 (a) N2 adsorption-desorption isotherms and (b) pore size distributions of ZIF-67 and Co-NC(0~48 h) samples, (c) curves of variation trend of BET surface area and pore volume of Co-NC composites with increased etching time
Sample | Co-NC(0 h) | Co-NC(6 h) | Co-NC(24 h) | Co-NC(48 h) |
---|---|---|---|---|
Co/wt% | 37.55 | 23.29 | 16.24 | 15.93 |
N/wt% | 6.68 | 8.36 | 8.79 | 8.78 |
N/C | 0.1070 | 0.1089 | 0.1056 | 0.1045 |
Table 2 Elemental content of Co and N in Co-NC composites and N/C ratio data
Sample | Co-NC(0 h) | Co-NC(6 h) | Co-NC(24 h) | Co-NC(48 h) |
---|---|---|---|---|
Co/wt% | 37.55 | 23.29 | 16.24 | 15.93 |
N/wt% | 6.68 | 8.36 | 8.79 | 8.78 |
N/C | 0.1070 | 0.1089 | 0.1056 | 0.1045 |
Fig. 7 (a) Cycle performances and (b) rate capabilities of S/Co-NC(0~48 h) electrodes with different Co contents; (c) Long-cycle performance of S/Co-NC(48 h) at 1.0C current density
[1] | DWNG NAN-PING, MA XIAO-MIN, RUAN YAN-LI , et al. Research and prospect of lithium-sulfur battery aystem. Progress in Chemistry, 2016,28(9):1435-1454. |
[2] | ZHAO X, CHERUVALLY G, KIM C , et al. Lithium/sulfur secondary batteries: a review. Journal of Electrochemical Science and Technology, 2016,7(2):97-114. |
[3] | LI FU-QIAO, ZHU ZE-HUA . Development of lithium/sulfur battery and its facing challenge. Chinese Journal of Power Sources, 2016,40(5):1142-1144. |
[4] |
FOTOUHI A, AUGER DJ, PROPP K , et al. A review on electric vehicle battery modelling: from lithium-ion toward lithium-sulphur. Renewable & Sustainable Energy Reviews, 2016,56:1008-1021.
DOI URL |
[5] |
KANG W, DENG N, JU J , et al. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale, 2016,8(37):16541-16588.
DOI URL PMID |
[6] |
DIAO Y, XIE K, XIONG S Z , et al. Shuttle phenomenon-the irreversible oxidation mechanism of sulfur active material in Li-S battery. Journal of Power Sources, 2013,235:181-186.
DOI URL |
[7] | WANG J L, HE Y S, YANG J . Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Advanced Materials, 2015,27(3):569-575. |
[8] |
SEH Z W, SUN Y, ZHANG Q , et al. Designing high-energy lithium-sulfur batteries. Chemical Society Reviews, 2016,45(20):5605-5634.
DOI URL PMID |
[9] |
PANG Q, LIANG X, KWOK C Y , et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nature Energy, 2016,1:71-83.
DOI URL |
[10] | PENG H J, HOU T Z, ZHANG Q , et al. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation. Advanced Materials Interfaces, 2014,1(7):1-10. |
[11] | LI G, SUN J, HOU W , et al. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high- performance lithium-sulfur batteries. Nature Communications, 2016, 7: 10601-1-10. |
[12] |
XU Y, WEN Y, ZHU Y , et al. Confined sulfur in microporous carbon renders superior cycling stability in Li/S batteries. Advanced Functional Materials, 2015,25(27):4312-4320.
DOI URL |
[13] |
CHONG WG, HUANG J Q, XU Z L , et al. Lithium-sulfur battery cable made from ultralight,flexible graphene/carbon nanotube/ sulfur composite fibers. Advanced Functional Materials, 2017, 27(4): 1604815-1-10.
DOI URL |
[14] | XIA W, MAHMOOD A, ZOU R , et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy & Environmental Science, 2015,8(7):1837-1866. |
[15] |
YANG S J, KIM T, IM J H , et al. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chemistry of Materials, 2012,24(3):464-470.
DOI URL |
[16] | XIA B Y, YAN Y, LI N , et al. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nature Energy, 2016,1(1):15006-15012. |
[17] |
XIA Y, FANG R, XIAO Z , et al. Confining sulfur in N-doped porous carbon microspheres derived from microalgaes for advanced lithium-sulfur batteries. ACS Applied Materials & Interfaces, 2017,9:41339-41446.
DOI URL PMID |
[18] |
LI Y, FAN J, ZHANG J , et al. A honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S batteries. ACS Nano, 2017,11(11):11417-11424.
DOI URL PMID |
[19] | KHAN IA, NASIM F, CHOUCAIR M , et al. Cobalt oxide nanoparticle embedded N-CNTs: lithium ion battery applications. RSC Advances, 2016,6(2):1129-1135. |
[20] | ZHANG H, ZHAO W, ZOU M , et al. 3D,mutually embedded MOF@carbon nanotube hybrid networks for high-performance lithium-sulfur batteries. Advanced Energy Materials, 2018, 19: 1800013-1-11. |
[21] |
LI Y J, FAN M F, ZHENG M S , et al. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy & Environmental Science, 2016,9:1998-2004.
DOI URL |
[22] |
VIZINTIN A, CHABNANE L, TCHERNYCHOVA E , et al. The mechanism of Li2S activation in lithium-sulfur batteries: can we avoid the polysulfide formation? Journal of Power Sources, 2017,344:208-217.
DOI URL |
[1] | JIANG Yiyi, SHEN Min, SONG Banxia, LI Nan, DING Xianghuan, GUO Leyi, MA Guoqiang. Effect of Dual-functional Electrolyte Additive on High Temperature and High Voltage Performance of Li-ion Battery [J]. Journal of Inorganic Materials, 2022, 37(7): 710-716. |
[2] | ZENG Fanxin, LIU Chuang, CAO Yuliang. Sodium Storage Behavior of Nanoporous Sb/MCNT Anode Material with High Cycle Stability by Dealloying Route [J]. Journal of Inorganic Materials, 2021, 36(11): 1137-1144. |
[3] | TANG Jiawei, WANG Yongbang, MA Cheng, YANG Haixiao, WANG Jitong, QIAO Wenming, LING Licheng. Methylnaphthalene Pitch-based Ordered Mesoporous Carbon: Synthesis and Electrochemical Properties [J]. Journal of Inorganic Materials, 2021, 36(10): 1031-1038. |
[4] | WANG Xiang-Xue, YU Shu-Jun, WANG Xiang-Ke. Removal of Radionuclides by Metal-organic Framework-based Materials [J]. Journal of Inorganic Materials, 2019, 34(1): 17-26. |
[5] | MENG Xiang-Lu, HUO Han-Yu, GUO Xiang-Xin, DONG Shao-Ming. Influence of Film Thickness on the Electrochemical Performance of α-SiOx Thin-film Anodes [J]. Journal of Inorganic Materials, 2018, 33(10): 1141-1146. |
[6] | YU Zheng-Fa, WANG Xu-Zhen, HOU Ya-Nan, ZHAO Zong-Bin, Rui Li, QIU Jie-Shan. Facile Preparation of Nitrogen-doped Porous Carbons via Salt Melt Synthesis with Efficient Catalytic Desulfurization Performance [J]. Journal of Inorganic Materials, 2017, 32(7): 770-776. |
[7] | YANG Tao, LI Xiao, TIAN Xiao-Dong, SONG Yan, LIU Zhan-Jun, GUO Quan-Gui. Preparation and Electrochemical Performance of Si@C/SiOx as Anode Material for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2017, 32(7): 699-704. |
[8] | TONG Yan-Wei, ZHANG Xue-Feng, FANG Min-Xian. Structures and Electrochemical Properties of V2Ti0.5Cr0.5Ni1-xMox(x=0.02-0.08) Ni/MH Battery Anode Materials [J]. Journal of Inorganic Materials, 2016, 31(2): 148-152. |
[9] | GUO De-Chao, ZENG Xie-Rong, DENG Fei, ZOU Ji-Zhao, SHENG Hong-Chao. Preparation and Electrochemical Performance of Carbon nanotubes/Micro-expanded?Graphite Composite Anodes for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2012, 27(10): 1035-1041. |
[10] | FAN Jun-Liang,PAN Hong-Ge,GAO Ming-Xia,LIN Yan,LIU Ji-Qiang. Synthesis and Performance of LiFePO4/C Prepared with Nonaqueous Sol-Gel Method [J]. Journal of Inorganic Materials, 2007, 22(6): 1032-1036. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||