[1] Reaney I M, Iddles D. Microwave dielectric ceramics for fesonators and filters in mobile phone networks. Journal of the American Ceramics Society, 2006, 89(7): 2063-2072. [2] Federici J, Moelle L. Review of terahertz and sub terahertz wireless communications. Journal of Applied Physics, 2010, 107(11): 111101-1-22.[3] Fujii T, Ando A, Sakabe Y. Characterizations of dielectric properties of oxide materials in frequency range from GHz to THz. Journal of the European Ceramics Society, 2006, 26(10/11): 1857-1860.[4] Kamba S, Noujni D, Pashkin A, et al. Low-temperature microwave and THz dielectric response, Journal of the European Ceramics Society, 2006, 26(10/11): 1845-1856.[5] SONG Kai-Xin, YING Zhi-Hua, SHAO Li-Huan, et al. Investigation of microwave dielectric properties of (Mg1-xZnx)2SiO4 (0≤x≤1) Ceramics. Journal of Inorganic Materials, 2010, V25(3): 255-258.[6] Guo Y P, Ohsato H, Kakimoto K. Characterization and cielectric behavior of willemite and TiO2-doped willemite ceramics at millimeter-wave frequency. Journal of the European Ceramics Society, 2006, 26(10/11): 1827-1830.[7] Terada M, Kawamura K, Kagomiya I, et al. Effect of Ni substitution on the microwave dielectric properties of cordierite. Journal of the European Ceramic Society, 2007, 27(8/9): 3045-3048.[8] Joseph T, Sebastian M T. Microwave dielectric properties of (Sr1-xAx)2(Zn1-xBx)Si2O7 ceramics (A= Ca, Ba and B= Co, Mg, Mn, Ni). Journal of American Ceramics Society, 2010, 93(1): 147-154.[9] Krzmanc M M, Valant M, Jancar B, et al. Sub-solidus synthesis and microwave dielectric characterization of plagioclase feldspars. Journal of American Ceramics Society, 2005, 88(9): 2472-2479.[10] Krzmanc M M, Valant M, Suvorov D. The synthesis and microwave dielectric properties of SrxBa1-xAl2Si2O8 and CaxBa1-xAl2Si2O8 ceramics. Journal of the European Ceramic Society, 2007, 27(8): 1181-1185. [11] Meng S Q, Yue Z X, Zhuang H, et al. Microwave dielectric properties of Ba3(VO4)2-Mg2SiO4 composite ceramics. Journal of American Ceramics Society, 2010, 93(2): 359-361.[12] Ohasto H, Tsunooka T, Sugiyama T, et al. Forsterite ceramics for millimeter wave dielectrics. Journal of Electroceramic, 2006, 17(2/3/4): 445--50.[13] Ohasto H, Kagomiya I, Kakimoto K. Origin of improvement of Q based on high symmetry accompanying Si-Al Disordering in cordierite millimeter-wave ceramics. Journal of the European Ceramic Society, 2010, 30(2): 315-318.[14] Camerucci M A, Urretavizcaya G, Castro M S, et al. Electrical properties and thermal expansion of cordierite and cordierite-mullite materials. Journal of the European Ceramic Society, 2001, 21(16): 2917-2923.[15] 陈国华. 低温共烧玻璃陶瓷材料的制备及性能、机理研究. 长沙: 中南大学博士论文, 2006.[16] Hakki B W, Coleman P D. A dielectric resonant method of measuring inductive capacitance in the millimeter range. IEEE Transaction Microwave Theory Techniques, 1960, 8(7): 402-410.[17] 王晓凤. La3+/CeO2对堇青石陶瓷的改性研究. 呼和浩特: 内蒙古工业大学硕士论文, 2005.[18] Shannon R D. Dielectric polarizabilities of ions in oxides and fluorides. Journal of Applied Physics, 1993, 73(1): 348--66.[19] Freer R, Azough F. Microstructural engineering of microwave dielectric ceramics. Journal of the European Ceramic Society, 2008, 28(7): 1433-1441.[20] Penn S J, Alford N McN, Templeton A, et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. Journal of the American Ceramics Society, 1997, 80(7): 1885-1888.[21] Krzmanc M M, Jancar B, Suvorov D. The influence of tetrahedral ordering on the microwave dielectric properties of Sr0.05Ba0.95Al2Si2O8 and BaM2M’2O8 (M= Al, Ga, M’= Si, Ge) ceramics. Journal of the European Ceramic Society, 2008, 28(16): 3141-3148. |