Journal of Inorganic Materials ›› 2012, Vol. 27 ›› Issue (1): 26-32.DOI: 10.3724/SP.J.1077.2012.00026
• Orginal Article • Previous Articles Next Articles
GUO Jia1, ZHU Yi2, ZHANG Yuan-Ming2, LI Ming-Yu3, YANG Jun2
Received:
2011-03-24
Revised:
2011-06-03
Published:
2012-01-09
Online:
2011-12-19
CLC Number:
GUO Jia, ZHU Yi, ZHANG Yuan-Ming, LI Ming-Yu, YANG Jun. Hydrothermal Synthesis and Visible-light Photocatalytic Properties of BiVO4 with Different Structures and Morphologies[J]. Journal of Inorganic Materials, 2012, 27(1): 26-32.
Add to citation manager EndNote|Ris|BibTeX
[1] | Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37-38. |
[2] | Yu J, Yu H, Cheng B, et al. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B, 2003, 107(50): 13871-13879. |
[3] | BAI Yuan, SUN Hong-Qi, JIN Wan-Qin. Effects of pH values on the physicochemical properties and photocatalytic activities of nitrogen-doped TiO2.Journal of Inorganic Materials, 2008, 23(2): 387-392. |
[4] | 柳丽芬, 董晓艳, 杨凤林, 等(LIU Li-Feng. Ag/TiO2光催化还原硝酸氮. 无机化学学报, 2008, 24(2): 211-217. |
[5] | Takanabe K, Kamata K, Wang X, et al. Photocatalytic hydrogen evolution on dye-sensitized mesoporous carbon nitride photocatalyst with magnesium phthalocyanine. Phys. Chem. Chem. Phys., 2010, 12(40): 13020-13025. |
[6] | Khan R, Kim T. Preparation and application of visible- light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts. J. Hazard. Mater., 2009, 163(2/3): 1179-1184. |
[7] | Chang W K, Rao K K, Kuo H C, et al. A novel core-shell like composite In2O3@CaIn2O4 for efficient degradation of Methylene Blue by visible light. Appl. Catal. A Gen., 2007, 321(1): 1-6. |
[8] | Zhang C, Zhu Y. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chem. Mater., 2005, 17(13): 3537-3545. |
[9] | Ouyang S, Zhang H, Li D, et al. Electronic structure and photocatalytic characterization of a novel photocatalyst AgAlO2. J. Phys. Chem. B, 2006, 110(24): 11677-11682. |
[10] | Zhang L, Xu T, Zhao X, et al. Controllable synthesis of Bi2MoO6 and effect of morphology and variation in local structure on photocatalytic activities. Appl. Catal. B, 2010, 98(3/4): 138-146. |
[11] | Zou Z, Ye J, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature, 2001, 414(6864): 625-627. |
[12] | GE Lei, ZHANG Xian-Hua. Synthesis of novel visible light driven BiVO4 Photocatalysts via microemulsion process and its photocatalytic performance. Journal of Inorganic Materials, 2009, 24(3): 453-456. |
[13] | Sleight A W, Chen H Y, Ferretti A, et al. Crystal growth and structure of bismuth vanadate (BiVO4). Mater. Res. Bull., 1979, 14(12): 1571-1581. |
[14] | Long M, Cai W, Kisch H. Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4. J. Phys. Chem. C, 2008, 112(2): 548-554. |
[15] | Neves M C, Lehocky M, Soares R, et al. Chemical bath deposition of cerium doped BiVO4. Dyes Pigments, 2003, 59(2): 181-184. |
[16] | Zhang X, Quan X, Chen S, et al. Effect of Si doping on photoelectrocatalytic decomposition of phenol of BiVO4 film under visible light. J. Hazard. Mater., 2010, 177(1/2/3): 914-917. |
[17] | Zhang L, Chen D, Jiao X. Monoclinic structured BiVO4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B, 2006, 110(6): 2668-2673. |
[18] | Sun S, Wang W, Zhou L, et al. Efficient methylene blue removal over hydrothermally synthesized starlike BiVO4. Ind. Eng. Chem. Res., 2009, 48(4): 1735-1739. |
[19] | Yin W, Wang W, Zhou L, et al. CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. J. Hazard. Mater., 2010, 173(1/2/3): 194-199. |
[20] | Zheng Y, Wu J, Duan F, et al. Gemini surfactant directed preparation and photocatalysis of m-BiVO4 hierarchical frameworks. Chem. Lett., 2007, 36(4): 520-521. |
[21] | Zhou L, Wang W, Xu H. Controllable synthesis of three-dimensional well-defined BiVO4 mesocrystals via a facile additive-free aqueous strategy. Cryst. Growth Des., 2008, 8(2): 728-733. |
[22] | Guo Y, Yang X, Ma F, et al. Additive-free controllable fabrication of bismuth vanadates and their photocatalytic activity toward dye degradation. Appl. Surf. Sci., 2010, 256(7): 2215-2222. |
[23] | Zhang A, Zhang J. Hydrothermal processing for obtaining of BiVO4 nanoparticles. Mater. Lett., 2009, 63(22): 1939-1942. |
[24] | Yu J, Kudo A. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv. Funct. Mater., 2006, 16(16): 2163-2169. |
[25] | Tokunaga S, Kato H, Kudo A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater., 2001, 13(12): 4624-4628. |
[26] | Bierlein J, Sleight A. Ferroelasticity in bismuth vanadate (BiVO4). Solid State Commun., 1975, 16(1): 69-70. |
[27] | Fan W, Song X, Bu Y, et al. Selected-control hydrothermal synthesis and formation mechanism of monazite- and zircon-type LaVO4 nanocrystals. J. Phys. Chem. B, 2006, 110(46): 23247-23254. |
[28] | Bhattacharya A K, Mallick K K, Hartridge A. Phase transition in BiVO4. Mater. Lett., 1997, 30(1): 7-13. |
[29] | Zhou L, Wang W, Liu S, et al. A sonochemical route to visible- light-driven high-activity BiVO4 photocatalyst. J. Mol. Catal. A, 2006, 252(1/2): 120-124. |
[30] | Oshikiri M, Boero M, Ye J, et al. Electronic structures of promising photocatalysts InMO4 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. J. Chem. Phys., 2002, 117(15): 7313-7318. |
[31] | Zhang T, Oyama T, Aoshima A, et al. Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation. J. Photoch. Photobio. A, 2001, 140(2): 163-172. |
[32] | Zhang A, Zhang J, Cui N, et al. Effects of pH on hydrothermal synthesis and characterization of visible-light-driven BiVO4 photocatalyst. J. Mol. Catal. A: Chem., 2009, 304(1/2): 28-32. |
[33] | 姜承志, 苏会东, 卢旭东. 混晶纳米 TiO2薄膜光催化降解亚甲基蓝. 环境科学与技术, 2008, 31(8): 26-30. |
[34] | Wu C. Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems. Chemosphere, 2004, 57(7): 601-608. |
[1] | WANG Tingting, SHI Shumei, LIU Chenyuan, ZHU Wancheng, ZHANG Heng. Synthesis of Hierarchical Porous Nickel Phyllosilicate Microspheres as Efficient Adsorbents for Removal of Basic Fuchsin [J]. Journal of Inorganic Materials, 2021, 36(12): 1330-1336. |
[2] | SONG Keke, HUANG Hao, LU Mengjie, YANG Anchun, WENG Jie, DUAN Ke. Hydrothermal Preparation and Characterization of Zn, Si, Mg, Fe Doped Hydroxyapatite [J]. Journal of Inorganic Materials, 2021, 36(10): 1091-1096. |
[3] | LI Yuan-Yang, JIANG Bo. λ/4-λ/2 Double-layer Broadband Antireflective Coatings with Superhydrophilicity and Photocatalysis [J]. Journal of Inorganic Materials, 2019, 34(2): 159-163. |
[4] | WANG Shu-Jiang, YANG Yong-Heng, WEN Chun-Yang, ZHANG Guo-Kui, YUAN Chun-Hui. Preparation and Property of Nano-Ag/illite Composite Material [J]. Journal of Inorganic Materials, 2018, 33(5): 570-576. |
[5] | JIA Si-Qi, JIANG Zheng, CHI Li-Na, YE Ying, HU Shuang-Shuang. Synthesis and Photoelectrocatalytic Performance of Sb2S3 Nanorods from Natural Stibnite [J]. Journal of Inorganic Materials, 2018, 33(11): 1213-1218. |
[6] | YANG Kun-Kun, YANG Shao-Hua, ZHAO Ping, ZHAO Yan-Long. Hydrothermal Synthesis of FeS2/Reduced Graphene Oxide Nanocomposite with Enhanced Discharge Performance for Thermal Battery [J]. Journal of Inorganic Materials, 2017, 32(7): 691-698. |
[7] | GUO Yu, LI Dong-Xin, WU Hong-Mei, JIN Yu-Jia, ZHOU Li-Dai, CHEN Qiang-Qiang. Preparation, Characterization and Catalytic Performance of Supported Titanium Silicalite-1 Zeolite Membrane Catalyst [J]. Journal of Inorganic Materials, 2017, 32(6): 631-636. |
[8] | CAI Wei-Wei, LI Jiao, HE Jing, WANG Wei-Wei. Controlled Synthesis and Photocatalytic Activity Evaluation of Nanostructured Ag3PO4 [J]. Journal of Inorganic Materials, 2017, 32(3): 263-268. |
[9] | SONG Jia, XU Ying, MO Yan-Ping, LI Yong-An. Enhanced Photocatalytic Activity of Bi2WO6 by the Synergistic Action of Ti(IV) and Graphene Bi-cocatalysts [J]. Journal of Inorganic Materials, 2017, 32(3): 269-274. |
[10] | ABUBAKER Abutartour, LOTFIA El-Majdoub, SHI Ya-Sai, LI Ni-Li, XU Qing-Hong. A New Porous Zirconium Phosphonate Hybride Material and Its Adsorption Properties [J]. Journal of Inorganic Materials, 2017, 32(3): 305-312. |
[11] | CUI Lei, YANG Li-Juan, WANG Fan, XIA Wei-Wei. Fabrication of Flower-like Sn3O4 Hollow Microspheres and Their Photocatalytic Activity [J]. Journal of Inorganic Materials, 2016, 31(5): 461-465. |
[12] | YAN Hui, Qi Lu, ZHANG Ding, WANG Zheng-De, LIU Yun-Ying, WANG Xiao-Xia, ZHU Tie-Yong. Hydrothermal Synthesis and Electrochemical Performance of Spherical Li4Ti5O12 as Anode Material for Lithium-ion Secondary Battery [J]. Journal of Inorganic Materials, 2016, 31(11): 1242-1248. |
[13] | XIE Hui-Dong, LI Fei, CHEN Chao, XI Hai-Hong, SHI Ling. Microwave Dielectric Properties of LaPO4 Ceramics Synthesized by a Hydrothermal Method [J]. Journal of Inorganic Materials, 2015, 30(8): 882-886. |
[14] | ZHEN Yan-Zhong, LI Jing, WANG Dan-Jun, FU Feng, XUE Gang-Lin. Synthesis of α-MoO3 Nanobelt and Its Photocatalytic Oxidative Desulfurization(Photo-ODS) Activity of Simulation Fuel [J]. Journal of Inorganic Materials, 2015, 30(4): 408-412. |
[15] | GAO Er-Ping, WANG Wen-Zhong. Synthesis and Visible-light Photocatalytic Activities of Bi2Sn2O7 [J]. Journal of Inorganic Materials, 2015, 30(1): 87-92. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||