[1] Tsutomu O, Atsushi U, Norihiro Y. Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc., 1995, 142(5): 1431-1435. [2] Ouyang C Y, Zhong Z Y, Lei M S. Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel. Electrochem. Commun., 2007, 9(5): 1107-1112.[3] Aldon L, Kubiak P, Womes M, et al. Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel. Chem. Mater., 2004, 16(26): 5721-5725.[4] Fattakhova D, Krtil P. Electrochemical activity of hydrothermally synthesized Li-Ti-O cubic oxides toward Li insertion. J. Electrochem. Soc., 2002, 148(9): A1224-A1229.[5] Prakash A S, Manikandan P, Ramesha K, et al. Solution- combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode. Chem. Mater., 2010, 22(9): 2857-2863.[6] Zaghib K, Armand M, Gauthier M. Electrochemistry of anodes in solid-state Li-ion polymer batteries. J. Electrochem. Soc., 1998, 145(9): 3135-3140.[7] Ge H, Li N, Li D Y, et al. Study on the Theoretical capacity of spinel lithium titanate induced by low-potential intercalation. J. Phys. Chem. C, 2009, 113(16): 6324-6326.[8] Yin S Y, Song L, Wang X Y, et al. Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction. Electrochim. Acta, 2009, 54(24): 5629-5633.[9] Zhao Y M, Liu G Q, Liu L, et al. High-performance thin-film Li4Ti5O12 electrodes fabricated by using ink-jet printing technique and their electrochemical properties. J. Solid State Electrochem., 2009, 13(5): 705-711.[10] Wang G J, Gao J, Fu L J, et al. Preparation and characteristic of carbon-coated Li4Ti5O12 anode material. J. Power Sources, 2007, 174(2): 1109-1112.[11] Cheng L, Yan J, Zhu G N, et al. General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J. Mater. Chem., 2010, 20(3): 595-602.[12] Kasuga T, Hiramatsu M, Hoson A, et al. Formation of titanium oxide nanotube. Langmuir, 1998, 14(12): 3160-3163.[13] Kasuga T, Hiramatsu M, Hoson A, et al. Titania nanotubes prepared by chemical processing. Adv. Mater., 1999, 11(15): 1307-1311.[14] Li J R, Tang Z L, Zhang Z T. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12. Electrochem. Commun., 2005, 7(9): 894-899.[15] Li Y, Pan G L, Liu J W, et al. Preparation of Li4Ti5O12 nanorods as anode materials for lithium-ion batteries. J. Electrochem. Soc., 2009, 156(7): A495-A499.[16] Srinivasan G, Gopalakrishnan N, Yu Y S, et al. Influence of post-deposition annealing on the structural and optical properties of ZnO thin films prepared by Sol-Gel and spin-coating method. Superlattices Microstruct, 2008, 43(2): 112-119.[17] William L, Adel A, David W. Impact of heat treatment and composition of ZnO-TiO2 nanoparticles for photocatalytic oxidation of an azo dye. Ind. Eng. Chem. Res., 2008, 47(5): 1483-1487.[18] Polona U, Romana C K, Bostjan J, et al. The influence of the reaction temperature on the morphology of sodium titanate 1D nanostructures and their thermal stability. J. Nanosci. Nanotechnol., 2007, 7(10): 3502-3508.[19] Erin M. S, Scott J. B, Ha-Kyun J, et al. Three-Dimensionally ordered macroporous Li4Ti5O12: effect of wall structure on electrochemical properties. Chem. Mater., 2006, 18(2): 482-489.[20] Yue W B, Xu X X, John Irvine T, et al. Mesoporous monocrystalline TiO and its solid-state electrochemical properties. Chem. Mater., 2009, 21(12): 2540-2546.[21] Kubiak P, Pfanzelt M, Geserick J, et al. Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries. J. Power Sources, 2009, 194(2): 1099-1104. |