[1] Long M, Rack H J. Titanium alloys in total joint replacement. Biomaterials, 1998, 19(18): 1621-1639. [2] Kokubo T, Takadama H. How useful is SBF in predicting <>in vivobone bioactivity. Biomaterials, 2006,27(15): 2907-2915. [3] Kar A, Raja K S, Misra M. Electrodeposition of hydroxyapatite ontonanotubular TiO2 for implant applications. Surf. & Coat. Tech., 2006, 201(6):3723-3731. [4] Ravelingien M, Hervent A S, Mullens S, et al. Influence of surface topographyand pore architecture of alkali-treated titanium on in vitro apatite deposition. Appl.Surf. Sci., 2010, 256(11): 3693-3697. [5] Kim D Y, Kim M Y, Kim H E, etal. Formation of hydroxyapatite within porous TiO2 layer by micro-arcoxidation coupled with electrophoretic deposition. Acta Biomaterialia, 2009, 5(6):2196-2205. [6] Lee J H, Kim H E, Koh Y H. Highly porous titanium (Ti) scaffoldswith bioactive microporous hydroxyapatite/TiO2 hybrid coating layer.Mater. Lett., 2009, 63(23): 1995-1998. [7] Liu XY, Chu P K, Ding C X. Surface modification of titanium, titanium alloys, andrelated materials for biochemical applications. Mater. Sci. Eng. R, 2004, 47(3/4):49-121. [8] Yang B,Uchida M, Kim H M, et al. Preparationof bioactive titanium metal viaanodic oxidation treatment. Biomaterials,2004, 25(6): 1003-1010. [9] Song W H, Jun Y K, Han Y, et al. Biomimetic apatite coatings on micro-arc oxidized titania. Biomaterials, 2004, 25(17): 3341-3349. [10]Kodama A, Bauer S, Komatsu A, et al. Bioactivation of titaniumsurfaces using coatings of TiO2 nanotubes rapidly pre-loaded withsynthetic hydroxyapatite. ActaBiomaterialia, 2009, 5(6): 2322-2330. [11]Hench L L. Bioceramics: from concept to clinic.J. Am. Ceram. Soc., 1991, 74(7): 1487-1510. [12]Gong D W, Grimes C A, Varghese OK, et al. Titanium oxide nanotube arraysprepared by anodie oxidation. J. Mater. Res., 2001, 16(12): 3331-3334. [13] Macak J M, Tsuchiya H, Ghicov A, et al. TiO2 nanotubes: self-organizedelectrochemical formation, properties and applications. Cur. Opi. Solid. State. Mater. Sci., 2007, 11(1/2): 3-18. [14]Song Y, Schmidt-Stein F, Bauer S, et al. Amphiphilic TiO2 nanotubearrays: an actively controllable drug delivery system. J. Am. Chem. Soc., 2009, 131(12):4230-4232. [15]KokuboT, Kushitani H, Sakka S, <>et al. Solution able to reproduce in vivo surface-structure changes inbioactive glass-ceramics A-W3. J. Biomed.Mater. Res., 1990, 24(6):721-734. [16]梁建鹤, 肖秀峰, 刘榕芳, 等(LIANG Jian-He, etal). 宽电压范围下阳极氧化制备TiO2纳米管阵列及其热稳定性. 无机化学学报(Chinese Journal of Inorganic Chemistry),2010, 37(1): 112-119. [17] 黄 平, 徐可为, 憨 勇(HUANG Ping, <>et al). 富含钙磷的多孔氧化钛膜及其生物活化机理. 硅酸盐学报(Journal of the Chinese Ceramic Society),2004, 32(12): 1449-1454. [18] Shi D L. Introduction to Biomaterials. 北京: 清华大学出版社, 2005: 14-25. [19] Wei M, Kim H M, Kokubo T, etal. Optimising the bioactivity of alkaline-treated titanium alloy. Mater. Sci. Eng. C,2002, 20(1/2): 125-134. [20] Oh S H, Finones R R, Daraio C, et al. Growth ofnano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials. 2005,26(24): 4938-4943. [21] Andrei G, Hiroaki T, Macak J M, etal. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochemistry Communications, 2005, 7(5): 505-509 [22] Bauer S, Kleber S, Schmuki P. TiO2 nanotubes: tailoringthe geometry in H3PO4/HF electrolytes. Electrochemistry Communications, 2006, 8(8): 1321-1325 [23]Tsuchiya H, Macak J M, Muller L, et al. Hydroxyapatite growth on anodicTiO2 nanotubes. J. Biomed. Mater. Res. Part. A, 2006, 77(3): 534-541. [24] Kunze J, Müller L, Macak J M, et al. Time-dependentgrowth of biomimetic apatite on anodic TiO2 nanotubes. Electrochimica Acta, 2008, 53(23): 6995-7003. [25]Jonasova L, Müller F A,Helebrant A, <>et al. Biomimetic apatite formation on chemically treated titanium.Biomaterials, 2004, 25(7/8): 1187-1194. |