Journal of Inorganic Materials
TANG Yang1, LIU Limin1,2, ZHOU Xiaoliang1,2,3, ZHANG Bo3, JIANG Xingzhou1, JIA Haoyi1, LUO Yanlinqing1
Received:
2025-02-14
Revised:
2025-04-17
Contact:
LIU Limin (1976-), associate professor. E-mail:liulimin_ly@126.com
About author:
Tang Yang (2001-), male, Master candidate. E-mail:2630565355@qq.com
Supported by:
CLC Number:
TANG Yang, LIU Limin, ZHOU Xiaoliang, ZHANG Bo, JIANG Xingzhou, JIA Haoyi, LUO Yanlinqing. Proton Ceramic Membrane Reactor: Preparation and Low-temperature Ammonia Decomposition Performance[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250057.
[1] SADEQ A M, HOMOD R Z, HUSSEIN A K,et al. Hydrogen energy systems: technologies, trends, and future prospects. Science of the Total Environment, 2024, 939: 173622. [2] YUE M L, LAMBERT H, PAHON E,et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews, 2021, 146: 111180. [3] AGYEKUM E B, ODOI-YORKE F, ABBEY A A,et al. A review of the trends, evolution, and future research prospects of hydrogen fuel cells-a focus on vehicles. International Journal of Hydrogen Energy, 2024, 72: 918. [4] LI N, ZHANG C, LI D,et al. Review of reactor systems for hydrogen production via ammonia decomposition. Chemical Engineering Journal, 2024, 495: 153125. [5] ZAINAL N A, ZULKIFLI N W M, GULZAR M,et al. A review on the chemistry, production, and technological potential of bio-based lubricants. Renewable and Sustainable Energy Reviews, 2018, 82: 80. [6] LIANG D T, FENG C, XU L,et al. Promotion effects of different methods in COx-free hydrogen production from ammonia decomposition. Catalysis Science & Technology, 2023, 13(12): 3614. [7] ZHANG X S, LIU Y T, WANG Y Y,et al. Self-assembled platinum-iridium alloy aerogels and their efficient electrocatalytic ammonia oxidation performance. Journal of Inorganic Materials, 2023, 38(5): 511. [8] MUKHERJEE S, DEVAGUPTAPU S V, SVIRIPA A,et al. Low-temperature ammonia decomposition catalysts for hydrogen generation. Applied Catalysis B: Environmental, 2018, 226: 162. [9] LIAN M L, SU J X, HUANG H Y,et al. Supported Ni catalysts from Ni-Mg-Al hydrotalcite-like compounds: preparation and catalytic performance for ammonia decomposition. Journal of Inorganic Materials, 2025, 40(1): 53. [10] SUN S C, JIANG Q Q, ZHAO D Y,et al. Ammonia as hydrogen carrier: advances in ammonia decomposition catalysts for promising hydrogen production. Renewable and Sustainable Energy Reviews, 2022, 169: 112918. [11] CECHETTO V, DI FELICE L, GUTIERREZ MARTINEZ R,et al. Ultra-pure hydrogen production via ammonia decomposition in a catalytic membrane reactor. International Journal of Hydrogen Energy, 2022, 47(49): 21220. [12] SHEN M H, AI F J, MA H L,et al. Progress and prospects of reversible solid oxide fuel cell materials. iScience, 2021, 24(12): 103464. [13] LI Y F, ZHANG W S, REN J,et al. Ammonia decomposition for carbon-free hydrogen production over Ni/Al-Ce catalysts: synergistic effect between Al and Ce. Fuel, 2024, 358: 130176. [14] BUONOMENNA M G.Proton-conducting ceramic membranes for the production of hydrogenvia decarbonized heat: overview and prospects. Hydrogen, 2023, 4(4): 807. [15] WANG H N, WANG X B, MENG B,et al. Perovskite-based mixed protonic-electronic conducting membranes for hydrogen separation: recent status and advances. Journal of Industrial and Engineering Chemistry, 2018, 60: 297. [16] LI N N, ZARKADOULAS A, KYRIAKOU V.Opportunities and challenges for direct electrification of chemical processes with protonic ceramic membrane reactors.Progress in Energy, 2024, 6(4): 043007. [17] LI F R, DUAN G X, WANG Z G,et al. Highly efficient recovery of hydrogen from dilute H2-streams using BaCe0.7Zr0.1Y0.2O3-δ/Ni-BaCe0.7Zr0.1Y0.2O3-δ dual-layer hollow fiber membrane. Separation and Purification Technology, 2022, 287: 120602. [18] WANG Q J, LUO T, TONG Y C,et al. Large-area protonic ceramic cells for hydrogen purification. Separation and Purification Technology, 2022, 295: 121301. [19] TONG Y C, WANG Y, CUI C S,et al. Preparation and characterization of symmetrical protonic ceramic fuel cells as electrochemical hydrogen pumps. Journal of Power Sources, 2020, 457: 228036. [20] LIANG M Z, SONG Y F, XIONG B C,et al. In situ exsolved CoFeRu alloy decorated perovskite as an anode catalyst layer for high-performance direct-ammonia protonic ceramic fuel cells. Advanced Functional Materials, 2024, 34(48): 2408756. [21] 曹希文, 罗凌虹, 曾小军, 等. 固体氧化物燃料电池Ni基阳极抗积碳的研究进展. 陶瓷学报, 2024, 45(1): 72. [22] 蓝海洋, 陈星余, 张博, 等. 固体氧化物直接氨燃料电池阳极材料的研究进展. 陶瓷学报, 2023, 44(6): 1078. [23] PENG C X, ZHAO B X, MENG X,et al. Effect of NiO addition on the sintering and electrochemical properties of BaCe0.55Zr0.35Y0.1O3-δ proton-conducting ceramic electrolyte. Membranes, 2024, 14(3): 61. [24] DANILOV N A, STAROSTINA I A, STAROSTIN G N,et al. Fundamental understanding and applications of protonic Y- and Yb-coped Ba(Ce, Zr)O3 perovskites: state-of-the-art and perspectives. Advanced Energy Materials, 2023, 13(47): 2302175. [25] YANG Y M, LU J C, ZHANG X Y,et al. Symmetry-induced modulation of proton conductivity in Y-doped Ba(Zr, Ce)O3: insights from Raman spectroscopy. Journal of Materials Chemistry A, 2024, 12(21): 12599. [26] ZHANG J H, LU X T, MAO H Y, et al.Effect of sintering additives on sintering behavior and conductivity of BaZr0.1Ce0.7Y0.2O3-δ electrolytes. Journal of Inorganic Materials, 2025, 40(1): 84. [27] ZHU D C, LIU Z Q, ZHU C J,et al. Construction of a novel BaZr0.1Ce0.7Y0.2O3-δ-SnO2 heterojunction composite electrolyte for advanced semiconductor ion fuel cells operating at lower temperature down to 350 ℃. Chemical Engineering Journal, 2025, 505: 159368. [28] HOU J, GONG J Y, BI L.Advancing cathodic electrocatalysisvia an in situ generated dense active interlayer based on CuO5 pyramid-structured Sm2Ba1.33Ce0.67Cu3O9. Journal of Materials Chemistry A, 2022, 10(30): 15949. [29] HOU J, DONG K, MIAO L N,et al. Rationally structuring proton-conducting solid oxide fuel cell anode with Ni metal catalyst and porous skeleton. Ceramics International, 2020, 46(15): 24038. [30] ZHANG G J, CHEN T, GUO Z Z,et al. A 10 × 10 cm2 protonic ceramic electrochemical hydrogen pump for efficient and durable hydrogen purification. Chemical Engineering Journal, 2024, 495: 153521. [31] CHOI J, SHIN M, KIM B,et al. High-performance ceramic composite electrodes for electrochemical hydrogen pump using protonic ceramics. International Journal of Hydrogen Energy, 2017, 42(18): 13092. [32] MUSHTAQ U, WELZEL S, SHARMA R K,et al. Development of electrode-supported proton conducting solid oxide cells and their evaluation as electrochemical hydrogen pumps. ACS Applied Materials & Interfaces, 2022, 14(34): 38938. [33] YUN J,et al. Understanding direct-ammonia protonic ceramic fuel cells: high-performance in the absence of precious metal catalysts. ACS Energy Letters, 2024, 9(11): 5520. [34] ZHOU Y C, LIU E Z, CHEN Y,et al. An active and robust air electrode for reversible protonic ceramic electrochemical cells. ACS Energy Letters, 2021: 1511. |
[1] | YANG Yan, ZHANG Faqiang, MA Mingsheng, WANG Yongzhe, OUYANG Qi, LIU Zhifu. Low Temperature Sintering of ZnAl2O4 Ceramics with CuO-TiO2-Nb2O5 Composite Oxide Sintering Aid [J]. Journal of Inorganic Materials, 2025, 40(6): 711-718. |
[2] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[3] | YIN Changzhi, CHENG Mingfei, LEI Weicheng, CAI Yiyang, SONG Xiaoqiang, FU Ming, LÜ Wenzhong, LEI Wen. Effect of Ga3+ Doping on Crystal Structure Evolution and Microwave Dielectric Properties of SrAl2Si2O8 Ceramic [J]. Journal of Inorganic Materials, 2025, 40(6): 704-710. |
[4] | WAN Junchi, DU Lulu, ZHANG Yongshang, LI Lin, LIU Jiande, ZHANG Linsen. Structural Evolution and Electrochemical Performance of Na4FexP4O12+x/C Cathode Materials for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(5): 497-503. |
[5] | XUE Ke, CAI Changkun, XIE Manyi, LI Shuting, AN Shengli. Pr1+xBa1-xFe2O5+δ Cathode Materials for Solid Oxide Fuel Cells: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2025, 40(4): 363-371. |
[6] | CHEN Zhengpeng, JIN Fangjun, LI Mingfei, DONG Jiangbo, XU Renci, XU Hanzhao, XIONG Kai, RAO Muming, CHEN Chuangting, LI Xiaowei, LING Yihan. Double Perovskite Sr2CoFeO5+δ: Preparation and Performance as Cathode Material for Intermediate-temperature Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2024, 39(3): 337-344. |
[7] | JIANG Qiang, SHI Lizhi, CHEN Zhengran, ZHOU Zhiyong, LIANG Ruihong. Preparation and Properties of Hard PZT Piezoelectric Ceramics Poled above Curie Temperature and Multilayer Actuators [J]. Journal of Inorganic Materials, 2024, 39(10): 1091-1099. |
[8] | PENG Ping, TAN Litao. Structure and Piezoelectric Properties of CuO-doped (Ba,Ca)(Ti,Sn)O3 Ceramics [J]. Journal of Inorganic Materials, 2024, 39(10): 1100-1106. |
[9] | KE Xin, XIE Bingqing, WANG Zhong, ZHANG Jingguo, WANG Jianwei, LI Zhanrong, HE Huijun, WANG Limin. Progress of Interconnect Materials in the Third-generation Semiconductor and Their Low-temperature Sintering of Copper Nanoparticles [J]. Journal of Inorganic Materials, 2024, 39(1): 17-31. |
[10] | LUO Shuwen, MA Mingsheng, LIU Feng, LIU Zhifu. Corrosion Behavior and Mechanism of LTCC Materials in Ca-B-Si System [J]. Journal of Inorganic Materials, 2023, 38(5): 553-560. |
[11] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[12] | WEI Tingting, XU Huarui, ZHU Guisheng, LONG Shenfeng, ZHANG Xiuyun, ZHAO Yunyun, JIANG Xupeng, SONG Jinjie, GUO Ningjie, GONG Yipeng. Preparation and Properties of BaTiO3 Ceramics by Low Temperature Cold Sintering [J]. Journal of Inorganic Materials, 2022, 37(8): 903-910. |
[13] | CHEN Yaling, SHU Song, WANG Shaoxin, LI Jianjun. Mn-HAP SCR Catalyst: Preparation and Sulfur Resistance [J]. Journal of Inorganic Materials, 2022, 37(10): 1065-1072. |
[14] | LIU Fangfang, CHUAN Xiuyun, YANG Yang, LI Aijun. Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes [J]. Journal of Inorganic Materials, 2021, 36(7): 711-717. |
[15] | ZHANG Yaping,LEI Yuxuan,DING Wenming,YU Lianqing,ZHU Shuaifei. Preparation and Photoelectrochemical Property of the Dual-ferroelectric Composited Material [J]. Journal of Inorganic Materials, 2020, 35(9): 987-992. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||