Journal of Inorganic Materials ›› 2019, Vol. 34 ›› Issue (5): 560-566.DOI: 10.15541/jim20180571
• RESEARCH LETTERS • Previous Articles Next Articles
Chao-Xiang SUN,Liang CHEN,Yu CHANG,Wei TIAN(),Liang LI
Received:
2018-12-04
Published:
2019-05-20
Online:
2019-05-14
Supported by:
CLC Number:
Chao-Xiang SUN, Liang CHEN, Yu CHANG, Wei TIAN, Liang LI. A Self-powered UV-visible Photodetector Based on p-Se/Al2O3/n-ZnO Nanorod Array Heterojunction[J]. Journal of Inorganic Materials, 2019, 34(5): 560-566.
Fig. 4 Typical I-V curves for Se-Al2O3-ZnO device under (a) dark, white light and (b) dark, monochromatic lights; I-t curves of the device under (c) dark, white light and (d) dark, monochromatic lights; (e) Long-term response of the device under 500 nm illumination; (f) Spectral responsivity and detectivity of the device at 0 bias voltage
Fig. 5 I-t curves of the Se/Al2O3/ZnO heterojunction device under illumination of (a) 405 nm and (c) 650 nm lasers with varying light intensities (The unit of the light power is mW·cm-2); Relationships between the photocurrent and the light intensity at 0 bias voltage under illumination of (b) 405 and (d) 650 nm lasers
Fig. 6 (a) Diagram of electric circuit to characterize the response speed; (b) Time-dependent voltage curves at different chopper frequency; (c) Normalized voltage-frequency curve; (d) Enlarged one response cycle with rise and decay time
[1] |
ZHENG L, TENG F, ZHANG Z , et al. Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions. J. Mater. Chem. C, 2016,4(42):10032-10039.
DOI URL |
[2] |
LIU X, GU L L, ZHANG Q P , et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun., 2014,5:4007-4016.
DOI URL PMID |
[3] |
TSAI D S, LIU K K, LIEN D H , et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano, 2013,7(5):3905-3911.
DOI URL PMID |
[4] |
LU H, TIAN W, CAO F R , et al. A self-powered and stable all-perovskite photodetector-solar cell nanosystem. Adv. Funct. Mater., 2016,26(8):1296-1302.
DOI URL |
[5] |
HATCH S M, BRISCOE J, DUNN S A . Self-powered ZnO- nanorod/CuSCN UV photodetector exhibiting rapid response. Adv. Mater., 2013,25(6):867-871.
DOI URL PMID |
[6] |
YANG Z, WANG M Q, DING J J , et al. Semi-transparent ZnO- CuI/CuSCN photodiode detector with narrow-band UV photoresponse. ACS Appl. Mater Interfaces., 2015,7(38):21235-21244.
DOI URL |
[7] | LI M, LIN C Y, YANG S H , et al. High mobilities in layered InSe transistors with indium-encapsulation-induced surface charge doping. Adv. Mater., 2018, 30(44): 1803690-1-10. |
[8] |
BIE Y Q, LIAO Z M, ZHANG H Z , et al. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater., 2011,23(5):649-653.
DOI URL PMID |
[9] | CHEN H Y, LIU K W, HU L F , et al. New concept ultraviolet photodetector . Mater Today., 2015,18(9):493-502. |
[10] |
ZHANG H B, ZHANG X J, LIU C , et al. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors. ACS Nano, 2016,10(5):5113-5122.
DOI URL PMID |
[11] |
SHEN Y W, YAN X Q, BAI Z M , et al. A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction. RSC Adv., 2015,5(8):5976-5981.
DOI URL |
[12] |
FANG X S, YAN J, HU L , et al. Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes. Adv. Funct. Mater., 2012,22(8):1613-1622.
DOI URL |
[13] |
FANG X S, BANDO Y, LIAO M , et al. Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater., 2009,21(20):2034-2039.
DOI URL |
[14] |
LIU H, HU L, WATANABE K , et al. Cathodoluminescence modulation of ZnS nanostructures by morphology, doping, and temperature. Adv. Funct. Mater., 2013,23(29):3701-3709.
DOI URL |
[15] |
LIU H, GAO N, LIAO M , et al. Hexagonal-like Nb2O5 nanoplates- based photodetectors and photocatalyst with high performances. Sci. Rep., 2015,5:7716-7725.
DOI URL PMID |
[16] |
LI D, SUN X, SONG H , et al. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater., 2012,24(6):845-849.
DOI URL PMID |
[17] |
BAI Z, CHEN X, YAN X , et al. Self-powered ultraviolet photodetectors based on selectively grown ZnO nanowire arrays with thermal tuning performance. Phys. Chem. Chem. Phys., 2014,16(20):9525-9529.
DOI URL PMID |
[18] |
QIN J, QIU G, JIAN J , et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications. ACS Nano, 2017,11(10):10222-10229.
DOI URL |
[19] |
LUO L B, YANG X B, LIANG F X , et al. Transparent and flexible selenium nanobelt-based visible light photodetector. CrystEngComm, 2012,14(6):1942-1947.
DOI URL |
[20] | LIU P, MA Y, CAI W , et al. Photoconductivity of single-crystalline selenium nanotubes. Nanotechnology, 2007, 18(20): 205704-1-5. |
[21] |
MASUZAWA T, SAITO I, YAMADA T , et al. Development of an amorphous selenium-based photodetector driven by a diamond cold cathode. Sensors, 2013,13(10):13744-13778.
DOI URL PMID |
[22] | CHAMPNESS C H, SHUKRI Z A, CHAN C H . Minority carrier diffusion length determination from capacitance measurements in Se-CdO photovoltaic cells. Can.[J]. Phys., 1991,69(34):538-542. |
[23] |
CHANG C Y, PAN F M, LIN J S , et al. Lateral amorphous selenium metal-insulator-semiconductor-insulator-metal photodetectors using ultrathin dielectric blocking layers for dark current suppression. J. Appl. Phys., 2016, 120(23): 234501-1-8.
DOI URL |
[24] |
CHEN Y Z, YOU Y T, CHEN P J , et al. Environmentally and mechanically stable selenium 1D/2D hybrid structures for broad- range photoresponse from ultraviolet to infrared wavelengths. ACS Appl. Mater. Interfaces, 2018,10(41):35477-35486.
DOI URL |
[25] |
ZHENG L, HU K, TENG F , et al. Novel UV-visible photodetector in photovoltaic mode with fast response and ultrahigh photosensitivity employing Se/TiO2 nanotubes heterojunction. Small, 2017, 13(5): 1602448-1-11.
DOI URL PMID |
[26] |
YU P, HU K, CHEN H , et al. Novel p-p heterojunctions self- powered broadband photodetectors with ultrafast speed and high responsivity. Adv. Funct. Mater., 2017, 27(38): 1703166-1-10.
DOI URL |
[27] |
HU K, CHEN H, JIANG M , et al. Broadband photoresponse enhancement of a high performance t-Se microtube photodetector by plasmonic metallic nanoparticles. Adv. Funct. Mater., 2016,26(36):6641-6648.
DOI URL |
[28] |
SHAO D, YU M, LIAN J , et al. Heterojunction photodiode fabricated from multiwalled carbon nanotube/ZnO nanowire/p-silicon composite structure. Appl. Phys. Lett., 2013, 102(2): 021107-1-3.
DOI URL |
[29] |
TIAN C, JIANG D, LI B , et al. Performance enhancement of ZnO UV photodetectors by surface plasmons. ACS Appl. Mater. Interfaces, 2014,6(3):2162-2166.
DOI URL PMID |
[30] | YANG W, HU K, TENG F , et al. High-performance silicon- compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched type II Se/n-Si heterojunctions. Nano Lett., 2018,18(8):4697-4703. |
[1] | YANG Jialin, WANG Liangjun, RUAN Siyuan, JIANG Xiulin, YANG Chang. Highly Weak-light Sensitive and Dual-band Switchable Photodetector Based on CuI/Si Unilateral Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(9): 1063-1069. |
[2] | YE Maosen, WANG Yao, XU Bing, WANG Kangkang, ZHANG Shengnan, FENG Jianqing. II/Z-type Bi2MoO6/Ag2O/Bi2O3 Heterojunction for Photocatalytic Degradation of Tetracycline under Visible Light Irradiation [J]. Journal of Inorganic Materials, 2024, 39(3): 321-329. |
[3] | LI La, SHEN Guozhen. 2D MXenes Based Flexible Photodetectors: Progress and Prospects [J]. Journal of Inorganic Materials, 2024, 39(2): 186-194. |
[4] | CHAO Shaofei, XUE Yanhui, WU Qiong, WU Fufa, MUHAMMAD Sufyan Javed, ZHANG Wei. Efficient Potassium Storage through Ti-O-H-O Electron Fast Track of MXene Heterojunction [J]. Journal of Inorganic Materials, 2024, 39(11): 1212-1220. |
[5] | ZHANG Shumin, XI Xiaowen, SUN Lei, SUN Ping, WANG Deqiang, WEI Jie. Sonodynamic and Enzyme-like Activities of Niobium-based Coatings: Antimicrobial, Cell Proliferation and Cell Differentiation [J]. Journal of Inorganic Materials, 2024, 39(10): 1125-1134. |
[6] | HU Ying, LI Ziqing, FANG Xiaosheng. Solution-prepared AgBi2I7 Thin Films and Their Photodetecting Properties [J]. Journal of Inorganic Materials, 2023, 38(9): 1055-1061. |
[7] | CAI Kai, JIN Zhiwen. Photodetector Based on Two-dimensional Perovskite (PEA)2PbI4 [J]. Journal of Inorganic Materials, 2023, 38(9): 1069-1075. |
[8] | LI Yuejun, CAO Tieping, SUN Dawei. Bi4O5Br2/CeO2 Composite with S-scheme Heterojunction: Construction and CO2 Reduction Performance [J]. Journal of Inorganic Materials, 2023, 38(8): 963-970. |
[9] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[10] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[11] | MA Rundong, GUO Xiong, SHI Kaixuan, AN Shengli, WANG Ruifen, GUO Ruihua. S-type Heterojunction of MOS2/g-C3N4: Construction and Photocatalysis [J]. Journal of Inorganic Materials, 2023, 38(10): 1176-1182. |
[12] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[13] | WANG Ruyi, XU Guoliang, YANG Lei, DENG Chonghai, CHU Delin, ZHANG Miao, SUN Zhaoqi. p-n Heterostructured BiVO4/g-C3N4 Photoanode: Construction and Its Photoelectrochemical Water Splitting Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 87-96. |
[14] | CHEN Shikun, WANG Chuchu, CHEN Ye, LI Li, PAN Lu, WEN Guilin. Magnetic Ag2S/Ag/CoFe1.95Sm0.05O4 Z-scheme Heterojunction: Preparation and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(12): 1329-1336. |
[15] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||