Journal of Inorganic Materials ›› 2016, Vol. 31 ›› Issue (4): 407-412.DOI: 10.15541/jim20150448
• Orginal Article • Previous Articles Next Articles
ZHANG Guang-Xin, DONG Xiong-Bo, ZHENG Shui-Lin
Received:
2015-10-18
Revised:
2015-10-28
Published:
2016-04-20
Online:
2016-03-25
About author:
ZHANG Guang-Xin. E-mail: z111@163.com
Supported by:
CLC Number:
ZHANG Guang-Xin, DONG Xiong-Bo, ZHENG Shui-Lin. Photocatalytic Performance of Nano-TiO2/Diatomite Composite[J]. Journal of Inorganic Materials, 2016, 31(4): 407-412.
Composition/wt% | SiO2 | Al2O3 | Fe2O3 | MgO | TiO2 | L.O.I |
---|---|---|---|---|---|---|
Diatomite | 92.27 | 2.21 | 0.48 | 0.56 | 0.21 | 2.84 |
Nano-TiO2/ Diatomite | 68.69 | 1.93 | 0.27 | 0.39 | 25.96 | 1.67 |
Table 1 Chemical composition of the purified diatomite and nano-TiO2/diatomite
Composition/wt% | SiO2 | Al2O3 | Fe2O3 | MgO | TiO2 | L.O.I |
---|---|---|---|---|---|---|
Diatomite | 92.27 | 2.21 | 0.48 | 0.56 | 0.21 | 2.84 |
Nano-TiO2/ Diatomite | 68.69 | 1.93 | 0.27 | 0.39 | 25.96 | 1.67 |
Sample | BET surface area /(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm | Cryatalline size /nm |
---|---|---|---|---|
Diatomite | 26.20 | 0.04 | 5.28 | — |
TiO2/Diatomite | 30.80 | 0.06 | 5.93 | 15.57 |
Table 2 Physical characters and crystallite size of diatomite and nano-TiO2/diatomite composite
Sample | BET surface area /(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm | Cryatalline size /nm |
---|---|---|---|---|
Diatomite | 26.20 | 0.04 | 5.28 | — |
TiO2/Diatomite | 30.80 | 0.06 | 5.93 | 15.57 |
Dye | Category | Molecular formula | Molecular structure | λmax/nm |
---|---|---|---|---|
Rhodamine B(RhB) | Xanthene dye | C28H31ClN2O3 | ![]() | 554 |
Table 3 Main characteristics of dye
Dye | Category | Molecular formula | Molecular structure | λmax/nm |
---|---|---|---|---|
Rhodamine B(RhB) | Xanthene dye | C28H31ClN2O3 | ![]() | 554 |
Catalyst dosage/ (g·L-1) | k /min-1 | R2 |
---|---|---|
0.5 | 0.058 | 0.998 |
1.0 | 0.072 | 0.992 |
2.0 | 0.100 | 0.989 |
3.0 | 0.102 | 0.999 |
Table 4 Model parameters for degradation of dyes by nano-TiO2/diatomite composite
Catalyst dosage/ (g·L-1) | k /min-1 | R2 |
---|---|---|
0.5 | 0.058 | 0.998 |
1.0 | 0.072 | 0.992 |
2.0 | 0.100 | 0.989 |
3.0 | 0.102 | 0.999 |
[1] | SELVAM P P, PREETHI S, BASAKARALINGAM P, et al.Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite.Journal of Hazardous Materials, 2008, 155(1): 39-44. |
[2] | MESSINA P V, SCHULZ P C.Adsorption of reactive dyes on titania- silica mesoporous materials.Journal of colloid and interface science, 2006, 299(1): 305-320. |
[3] | GUO H, LIN K, ZHENG Z, et al.Sulfanilic acid-modified P25 TiO2 nanoparticles with improved photocatalytic degradation on Congo red under visible light.Dyes and Pigments, 2012, 92(3): 1278-1284. |
[4] | SCHWEGMANN H, RUPPERT J, FRIMMEL F H.Influence of the pH-value on the photocatalytic disinfection of bacteria with TiO2-explanation by DLVO and XDLVO theory.Water Research, 2013, 47(4): 1503-1511. |
[5] | YANG X X, CAO C D, ERICKSON L, et al.Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation.Applied Catalysis B: Environmental, 2009, 91(3): 657-662. |
[6] | FUJISHIMA A, RAO T N, TRYK D A.Titanium dioxide photocatalysis.Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1(1): 1-21. |
[7] | SUN Z M, YANG X P, ZHANG G X, et al.A novel method for purification of low grade diatomite powders in centrifugal fields.International Journal of Mineral Processing, 2013, 125: 18-26. |
[8] | SUN Z M, BAI C H, ZHENG S L, et al.A comparative study of different porous amorphous silica minerals supported TiO2 catalysts.Applied Catalysis A: General, 2013, 458: 103-110. |
[9] | SUN Q, LI H, ZHENG S L, et al.Characterizations of nano-TiO2/diatomite composites and their photocatalytic reduction of aqueous Cr (VI).Applied Surface Science, 2014, 311: 369-376. |
[10] | SUN Q, LI H, NIU B J, et al.Nano-TiO2 immobilized on diatomite: characterization and photocatalytic reactivity for Cu2+ removal from aqueous solution.Procedia Engineering, 2015, 102: 1935-1943. |
[11] | WANG B, ZHANG G X, SUN Z M, et al.Synthesis of natural porous minerals supported TiO2 nanoparticles and their photocatalytic performance towards Rhodamine B degradation.Powder Technology, 2014, 262: 1-8. |
[12] | WANG B, ZHANG G X, LENG X, et al.Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts.Journal of Hazardous Materials, 2015, 285: 212-220. |
[13] | ZHANG G X, WANG B, SUN Z M, et al. A comparative study of different diatomite-supported TiO2 composites and their photocatalytic performance for dye degradation, Desalination and Water Treatment, DOI: 10.1080/19443994.2015.1085449. |
[14] | AKBARZADEH R, UMBARKAR S B, SONAWANE R S, et al.Vanadia-titania thin films for photocatalytic degradation of formaldehyde in sunlight.Applied Catalysis A: General, 2010, 374(1/2): 103-109. |
[15] | WANG S B, ZHU Z H.Effects of acidic treatment of activated carbons on dye adsorption.Dyes and Pigments, 2007, 75(2): 306-314. |
[16] | LI G T, SONG H Y, LIU B T.Production and contribution of hydroxyl radicals in photocatalytic oxidation process.Chinese Journal of Environmental Engineering, 2012, 6(10): 3388-3392. |
[1] | MA Binbin, ZHONG Wanling, HAN Jian, CHEN Liangyu, SUN Jingjing, LEI Caixia. ZIF-8/TiO2 Composite Mesocrystals: Preparation and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2024, 39(8): 937-944. |
[2] | CAO Qingqing, CHEN Xiangyu, WU Jianhao, WANG Xiaozhuo, WANG Yixuan, WANG Yuhan, LI Chunyan, RU Fei, LI Lan, CHEN Zhi. Visible-light Photodegradation of Tetracycline Hydrochloride on Self-sensitive Carbon-nitride Microspheres Enhanced by SiO2 [J]. Journal of Inorganic Materials, 2024, 39(7): 787-792. |
[3] | WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383-389. |
[4] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[5] | LING Jie, ZHOU Anning, WANG Wenzhen, JIA Xinyu, MA Mengdan. Effect of Cu/Mg Ratio on CO2 Adsorption Performance of Cu/Mg-MOF-74 [J]. Journal of Inorganic Materials, 2023, 38(12): 1379-1386. |
[6] | SUN Chen, ZHAO Kunfeng, YI Zhiguo. Research Progress in Catalytic Total Oxidation of Methane [J]. Journal of Inorganic Materials, 2023, 38(11): 1245-1256. |
[7] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[8] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[9] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[10] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[11] | WANG Xiaojun, XU Wen, LIU Runlu, PAN Hui, ZHU Shenmin. Preparation and Properties of Ag@C3N4 Photocatalyst Supported by Hydrogel [J]. Journal of Inorganic Materials, 2022, 37(7): 731-740. |
[12] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[13] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[14] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
[15] | WANG Luping, LU Zhanhui, WEI Xin, FANG Ming, WANG Xiangke. Application of Improved Grey Model in Photocatalytic Data Prediction [J]. Journal of Inorganic Materials, 2021, 36(8): 871-876. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||