无机材料学报 ›› 2025, Vol. 40 ›› Issue (5): 449-456.DOI: 10.15541/jim20250006
• 学科评述 • 下一篇
收稿日期:
2025-01-06
修回日期:
2025-01-17
出版日期:
2025-05-20
网络出版日期:
2025-01-24
通讯作者:
谭业强, 研究员. E-mail: tanyq@nsfc.gov.cn;作者简介:
陈 曦(1986-), 女, 副教授. E-mail: chenxi@ecust.edu.cn
基金资助:
CHEN Xi1(), YUAN Yuan1, TAN Yeqiang2(
), LIU Changsheng1(
)
Received:
2025-01-06
Revised:
2025-01-17
Published:
2025-05-20
Online:
2025-01-24
Contact:
TAN Yeqiang, professor. E-mail: tanyq@nsfc.gov.cn;About author:
CHEN Xi (1986-), female, associate professor. E-mail: chenxi@ecust.edu.cn
Supported by:
摘要:
无机非金属生物材料是生物材料的主要类型之一, 在组织修复、肿瘤治疗、药物递送等生物医药领域应用广泛, 为国民生命健康做出了重要贡献。我国无机非金属生物材料的研究日渐繁盛, 但其生产和应用仍处于攻坚克难阶段。为了实现我国无机非金属生物材料的高质量发展, 提高其为国民生命健康保驾护航的硬实力, 本文通过战略研究, 分析了我国无机非金属生物材料研究应用的热点和难点问题。基于目前的发展机遇与挑战, 提出了在材料的独特性能设计、材料生物学效应研究、材料介导的新原理和新机制探索、智能个性化定制、大数据筛选和人工智能设计、标准化评价和监管等方面系统发展无机非金属生物材料的建议, 以期为无机非金属生物医药产品的发展提供指导并积蓄科研和人才力量。
中图分类号:
陈曦, 袁媛, 谭业强, 刘昌胜. 无机非金属生物材料发展战略研究[J]. 无机材料学报, 2025, 40(5): 449-456.
CHEN Xi, YUAN Yuan, TAN Yeqiang, LIU Changsheng. Strategic Study on the Development of Inorganic Non-metallic Biomaterials[J]. Journal of Inorganic Materials, 2025, 40(5): 449-456.
[1] |
PEI Z F, LEI H L, CHENG L. Bioactive inorganic nanomaterials for cancer theranostics. Chemical Society Reviews, 2023, 52(6):2031.
DOI PMID |
[2] | IELO I, CALABRESE G, DE LUCA G, et al. Recent advances in hydroxyapatite-based biocomposites for bone tissue regeneration in orthopedics. International Journal of Molecular Sciences, 2022, 23(17): 25. |
[3] | YANG S B, LI Y S. Fluorescent hybrid silica nanoparticles and their biomedical applications. WIREs Nanomedicine and Nanobiotechnology, 2020, 12(3): 20. |
[4] | ARCOS D, VALLET-REGÍ M. Substituted hydroxyapatite coatings of bone implants. Journal of Materials Chemistry B, 2020, 8(9): 1781. |
[5] | WU C T, CHANG J. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. Journal of Controlled Release, 2014, 193: 282. |
[6] | 鞠银燕, 陈晓峰, 王迎军. 生物活性玻璃多孔材料的制备及性能研究. 硅酸盐通报, 2005(3): 9. |
[7] | VALLET-REGÍ M, COLILLA M, IZQUIERDO-BARBA I, et al. Mesoporous silica nanoparticles for drug delivery: current insights. Molecules, 2018, 23: 47. |
[8] | CHEN F, GOEL S, VALDOVINOS H F, et al. In vivo integrity and biological fate of chelator-free zirconium-89-labeled mesoporous silica nanoparticles. ACS Nano, 2015, 9(8): 7950. |
[9] | CHEN L, DENG C J, LI J Y, et al. 3D printing of a lithium- calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials, 2019, 196: 138. |
[10] | WANG X Y, ZHANG M, MA J G, et al. 3D printing of cell-container-like scaffolds for multicell tissue engineering. Engineering, 2020, 6(11): 1276. |
[11] | TANG Z R, LI X F, TAN Y F, et al. The material and biological characteristics of osteoinductive calcium phosphate ceramics. Regenerative Biomaterials, 2018, 5(1): 43. |
[12] | WANG Y J. Bioadaptability: an innovative concept for biomaterials. Journal of Materials Science & Technology, 2016, 32(9): 801. |
[13] | LI Y L, XIAO Y, LIU C S. The horizon of materiobiology: a perspective on material-guided cell behaviors and tissue engineering. Chemical Reviews, 2017, 117(5): 4376. |
[14] | ELIAZ N, METOKI N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials, 2017, 10(4): 104. |
[15] | CHEN R, WANG J, LIU C S. Biomaterials act as enhancers of growth factors in bone regeneration. Advanced Functional Materials, 2016, 26(48): 8810. |
[16] | NIU H Y, MA Y F, WU G Y, et al. Multicellularity-interweaved bone regeneration of BMP-2-loaded scaffold with orchestrated kinetics of resorption and osteogenesis. Biomaterials, 2019, 216: 17. |
[17] | DAI K, GENG Z, ZHANG W C, et al. Biomaterial design for regenerating aged bone: materiobiological advances and paradigmatic shifts. National Science Review, 2024, 11(5): 15. |
[18] | 王靖, 刘昌胜. 材料生物学——骨修复材料的机遇与挑战. 中国材料进展, 2019, 38(4): 359. |
[19] | WANG Y, XIE F R, HE Z R, et al. Senescence-targeted and NAD+-dependent SIRT1-activated nanoplatform to counteract stem cell senescence for promoting aged bone regeneration. Small, 2024, 20(12): 16. |
[20] | HE Z R, SUN C H, MA Y F, et al. Rejuvenating aged bone repair through multihierarchy reactive oxygen species-regulated hydrogel. Advanced Materials, 2024, 36(9): 15. |
[21] | ZHENG J Q, LU X, LU Y J, et al. Functional bioadaptability in medical bioceramics: biological mechanism and application. Journal of Inorganic Materials, 2024, 39(1): 1. |
[22] | LIU X, MIAO Y L, LIANG H F, et al. 3D-printed bioactive ceramic scaffolds with biomimetic micro/nano-HAp surfaces mediated cell fate and promoted bone augmentation of the bone-implant interface in vivo. Bioactive Materials, 2022, 12: 120. |
[23] | LU Q J, DIAO J J, WANG Y Q, et al. 3D printed pore morphology mediates bone marrow stem cell behaviors via RhoA/ROCK2 signaling pathway for accelerating bone regeneration. Bioactive Materials, 2023, 26: 413. |
[24] | 王晓亚, 常江. 生物陶瓷在组织工程中的应用. 生命科学, 2020, 32(3): 257. |
[25] | ZHANG M, QIN C, WANG Y F, et al. 3D printing of tree-like scaffolds for innervated bone regeneration. Additive Manufacturing, 2022, 54: 10. |
[26] | ZHANG H J, ZHANG M, ZHAI D, et al. Polyhedron-like biomaterials for innervated and vascularized bone regeneration. Advanced Materials, 2023, 35(42): 14. |
[27] | ZHANG H J, QIN C, ZHANG M, et al. Calcium silicate nanowires-containing multicellular bioinks for 3D bioprinting of neural-bone constructs. Nano Today, 2022, 46: 15. |
[28] | ZHANG H J, MA W P, MA H S, et al. Spindle-like zinc silicate nanoparticles accelerating innervated and vascularized skin burn wound healing. Advanced Healthcare Materials, 2022, 11(10): 13. |
[29] | ZHANG H J, QIN C, SHI Z, et al. Bioprinting of inorganic- biomaterial/neural-stem-cell constructs for multiple tissue regeneration and functional recovery. National Science Review, 2024, 11(4): 17. |
[30] | TANG L, ZHANG A N, ZHANG Z Y, et al. Multifunctional inorganic nanomaterials for cancer photoimmunotherapy. Cancer Communications, 2022, 42(2): 141. |
[31] | WANG X W, ZHONG X Y, LI J X, et al. Inorganic nanomaterials with rapid clearance for biomedical applications. Chemical Society Reviews, 2021, 50(15): 8669. |
[32] | SONG G S, HAO J L, LIANG C, et al. Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform. Angewandte Chemie International Edition, 2016, 55(6):2122. |
[33] | YANG Y, WU H, LIU B, et al. Tumor microenvironment- responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Advanced Drug Delivery Reviews, 2021, 179: 23. |
[34] | ZHANG A M, XIAO Z S, LIU Q F, et al. CaCO3-encapuslated microspheres for enhanced transhepatic arterial embolization treatment of hepatocellular carcinoma. Advanced Healthcare Materials, 2021, 10(19): 13. |
[35] | WANG D, ZHANG L, YANG W H, et al. Arginine-loaded nano-calcium-phosphate-stabilized lipiodol pickering emulsions potentiates transarterial embolization-immunotherapy. Advanced Science, 2024, 12(6): 2410484. |
[36] | LI Q F, CHAO Y, LIU B, et al. Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy. Biomaterials, 2022, 291: 13. |
[37] | GONG F, XU J C, LIU B, et al. Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy. Chem, 2022, 8(1): 268. |
[38] | YANG N L, GONG F, LIU B, et al. Magnesium galvanic cells produce hydrogen and modulate the tumor microenvironment to inhibit cancer growth. Nature Communications, 2022, 13: 12. |
[39] | DONG X L, SUN Y, LI Y Y, et al. Synergistic combination of bioactive hydroxyapatite nanoparticles and the chemotherapeutic doxorubicin to overcome tumor multidrug resistance. Small, 2021, 17(18): 12. |
[40] | DONG X L, ZANG C Y, SUN Y, et al. Hydroxyapatite nanoparticles induced calcium overload-initiated cancer cell-specific apoptosis through inhibition of PMCA and activation of calpain. Journal of Materials Chemistry B, 2023, 11(32): 7609. |
[41] | MA X Y, CHEN Y Y, QIAN J C, et al. Controllable synthesis of spherical hydroxyapatite nanoparticles using inverse microemulsion method. Materials Chemistry and Physics, 2016, 183: 220. |
[42] | SHEN T, WANG H, ZHANG S Q, et al. Safe, simple and multifunctional hydroxyapatite nanoparticles for efficient overcoming of tumor multidrug resistance. Applied Materials Today, 2024, 40: 15. |
[43] | SUN Y, CHEN Y Y, MA X Y, et al. Mitochondria-targeted hydroxyapatite nanoparticles for selective growth inhibition of lung cancer in vitro and in vivo. ACS Applied Materials & Interfaces, 2016, 8(39): 25680. |
[44] | CHEN S Y, XING Z Y, GENG M Y, et al. Macrophage fusion event as one prerequisite for inorganic nanoparticle-induced antitumor response. Science Advances, 2023, 9(29): 14. |
[45] | WANG R Q, HUA Y C, WU H F, et al. Hydroxyapatite nanoparticles promote TLR4 agonist-mediated anti-tumor immunity through synergically enhanced macrophage polarization. Acta Biomaterialia, 2023, 164: 626. |
[46] | ZHAO H, WU C H, GAO D, et al. Antitumor effect by hydroxyapatite nanospheres: activation of mitochondria dependent apoptosis and negative regulation of phosphatidylinositol-3- kinase/protein kinase B pathway. ACS Nano, 2018, 12(8): 7838. |
[47] | LUTHER D C, HUANG R, JEON T, et al. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Advanced Drug Delivery Reviews, 2020, 156: 188. |
[48] | ANSELMO A C, MITRAGOTRI S. A review of clinical translation of inorganic nanoparticles. AAPS Journal, 2015, 17(5): 1041. |
[49] | LI X L, JIANG C, JIA X L, et al. Dual "unlocking" strategy to overcome inefficient nanomedicine delivery and tumor hypoxia for enhanced photodynamic-immunotherapy. Advanced Healthcare Materials, 2023, 12(6): 9. |
[50] | NIU D C, LIU Z J, LI Y S, et al. Monodispersed and ordered large-pore mesoporous silica nanospheres with tunable pore structure for magnetic functionalization and gene delivery. Advanced Materials, 2014, 26(29): 4947. |
[51] | SHEN L Y, PAN S, NIU D C, et al. Facile synthesis of organosilica- capped mesoporous silica nanocarriers with selective redox- triggered drug release properties for safe tumor chemotherapy. Biomaterials Science, 2019, 7(5): 1825. |
[52] | QIU Y W, LUO Y J, QIN Y C, et al. Efficient synthesis of multi-responsive MSN sensitive to ROS, pH and temperature with significant anticancer effects. Materials Letters, 2024, 365: 5. |
[53] | LIU H M, DU Y Y, ST-PIERRE J P, et al. Bioenergetic-active materials enhance tissue regeneration by modulating cellular metabolic state. Science Advances, 2020, 6(13): 14. |
[54] | LIU X L, JIANG S T, JIANG T, et al. Bioenergetic-active exosomes for cartilage regeneration and homeostasis maintenance. Science Advances, 2024, 10(42): 18. |
[1] | 李世奇, 鲍群群, 胡萍, 施剑林. 基于乙二胺四乙酸插层锌铝双金属氢氧化物的晚期肿瘤抗转移免疫治疗研究[J]. 无机材料学报, 2024, 39(9): 1044-1052. |
[2] | 陈梦杰, 王倩倩, 吴成铁, 黄健. 基于DFT的描述符预测生物陶瓷的降解性[J]. 无机材料学报, 2024, 39(10): 1175-1181. |
[3] | 郑嘉乾, 卢霄, 鲁亚杰, 王迎军, 王臻, 卢建熙. 医用生物陶瓷的功能性生物适配机制及应用[J]. 无机材料学报, 2024, 39(1): 1-16. |
[4] | 施哲, 刘伟业, 翟东, 谢建军, 朱钰方. 3D打印制备镁黄长石生物陶瓷骨组织工程支架及其性能[J]. 无机材料学报, 2023, 38(7): 763-770. |
[5] | 盛丽丽, 常江. 光/磁热Fe2SiO4/Fe3O4双相生物陶瓷及其复合电纺丝膜制备及抗菌性能研究[J]. 无机材料学报, 2022, 37(9): 983-990. |
[6] | 许宏一, 翟东, 曹琬婷, 陈振华, 钱文昊, 陈蕾. Li2Ca2Si2O7生物陶瓷的矿化活性研究[J]. 无机材料学报, 2021, 36(7): 753-760. |
[7] | 董少杰,王旭东,沈国芳,王晓虹,林开利. 生物陶瓷支架的功能改性及应用研究进展[J]. 无机材料学报, 2020, 35(8): 867-881. |
[8] | 强小虎,李彬彬,黄大建,周松毅. 氧化硼对聚磷酸钙纤维力学和降解性能的影响[J]. 无机材料学报, 2019, 34(2): 201-206. |
[9] | 辛 晨, 齐 鑫, 朱 敏, 赵世昌, 朱钰方. 三维打印羟基磷灰石晶须增强复合骨修复支架[J]. 无机材料学报, 2017, 32(8): 837-844. |
[10] | 肖 雯, 刘玉梅, 任凯歌, 匙 峰, 李 焰, 智 伟, 翁 杰, 屈树新. 利用鸡胚模型半体内评价多孔磷酸钙骨修复材料血管化的研究[J]. 无机材料学报, 2017, 32(6): 649-654. |
[11] | 张庆福, 李 臣, 宋志国, 李永进, 邱建备, 杨正文. F/Cl比对卤磷酸钙固溶体Bi离子掺杂位点及价态的调控[J]. 无机材料学报, 2017, 32(6): 661-666. |
[12] | 李 根, 李炯炯, 李丽梅, 蒋佳兴, 李玉宝, 李吉东. 原位自发泡制备磷酸钙/聚氨酯复合骨修复支架[J]. 无机材料学报, 2016, 31(7): 719-725. |
[13] | 陈雪宁, 范红松, 王红军. 磷酸钙相组成对类骨单位复合骨支架的影响[J]. 无机材料学报, 2016, 31(1): 107-112. |
[14] | 王泉翔, 邬迎阳, 董谢平, 马旭辉, 魏 杰. 磷酸镁/PBS/小麦蛋白复合骨修复材料[J]. 无机材料学报, 2015, 30(9): 957-962. |
[15] | 黄 萍, 李 鹏, 赵军胜, 屈树新, 冯 波, 翁 杰. 机械活化增强多孔磷酸钙骨水泥支架的研究[J]. 无机材料学报, 2015, 30(4): 432-438. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||