无机材料学报 ›› 2025, Vol. 40 ›› Issue (5): 466-472.DOI: 10.15541/jim20240502

• 研究论文 • 上一篇    下一篇

Zn2+催化剂对酚醛树脂/乙二醇制备多孔碳微观孔结构的影响

郭子玉1,2(), 朱云洲2(), 王力2, 陈健2, 李红1(), 黄政仁2   

  1. 1.上海大学 材料科学与工程学院, 上海 200444
    2.中国科学院 上海硅酸盐研究所, 上海 200050
  • 收稿日期:2024-12-02 修回日期:2025-01-04 出版日期:2025-05-20 网络出版日期:2025-01-24
  • 通讯作者: 朱云洲, 正高级工程师. E-mail: yunzhouzhu@mail.sic.ac.cn;
    李 红, 教授. E-mail: lihong2007@shu.edu.cn
  • 作者简介:郭子玉(1999-), 女, 硕士研究生. E-mail: guoziyu25863@163.com
  • 基金资助:
    国家自然科学联合基金(U23A20563);国家重点研发计划(2021YFB3701500)

Effect of Zn2+ Catalyst on Microporous Structure of Porous Carbon Prepared from Phenolic Resin/Ethylene Glycol

GUO Ziyu1,2(), ZHU Yunzhou2(), WANG Li2, CHEN Jian2, LI Hong1(), HUANG Zhengren2   

  1. 1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
    2. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2024-12-02 Revised:2025-01-04 Published:2025-05-20 Online:2025-01-24
  • Contact: ZHU Yunzhou, professor. E-mail: yunzhouzhu@mail.sic.ac.cn;
    LI Hong, professor. E-mail: lihong2007@shu.edu.cn
  • About author:GUO Ziyu (1999-), female, Master candidate. E-mail: guoziyu25863@163.com
  • Supported by:
    Joint Funds of National Natural Science Foundation of China(U23A20563);National Key R&D Program of China(2021YFB3701500)

摘要:

多孔碳材料的性能及应用很大程度上取决于其微观孔结构。为便捷、有效地大范围调控多孔碳材料的微观孔结构, 本研究基于聚合诱导相分离(Polymerization-induced Phase Separation, PIPS)法, 以酚醛树脂/乙二醇为原料制备了均相多孔碳, 并系统研究了Zn2+含量以及固化温度对多孔碳微观孔结构的影响。研究发现, 随着固化温度的升高, 多孔碳稳定性降低, 微观孔结构均匀性变差。在90 ℃下固化, 引入Zn2+可以使多孔碳的孔隙率从40.22%增至70.38%, 平均孔径从49.8 nm增至279.4 nm, 中位孔径从107.2 nm增至343.0 nm。随着Zn2+含量的增加, 多孔碳的孔隙率、中位孔径和平均孔径都先增大后减小, 当Zn2+质量分数为1.5%时, 平均孔径达到最大值343.0 nm, 孔隙率达到最大值(70.38±0.37)%。研究指出, 引入Zn2+降低了酚醛树脂中苯酚结构的间位取代反应势垒, 有利于在苯环上构建大环化合物, 显著促进了树脂与乙二醇聚合, 提高了树脂混合物的固化程度及骨架聚合度, 使相分离更加彻底。当Zn2+含量过高时, 树脂混合物的聚合度过高, 导致富醇相难以挥发, 孔径结构变差。研究还发现, 引入Zn2+有助于提高石墨化程度, 使碳骨架更加清晰。本研究为调控多孔碳材料的微观孔结构及制备结构碳化物陶瓷提供了理论基础。

关键词: 多孔碳, 聚合诱导相分离法, Zn2+催化剂, 催化机理, 孔结构

Abstract:

Microporous structure is crucial to the properties and applications of porous carbon materials, but how to modulate it by an ion catalyst faces a complex situation. Here, a uniform porous carbon was obtained from phenolic resin/ethylene glycol through polymerization-induced phase separation (PIPS) method. Meanwhile, the influences of Zn2+ content and curing temperature on the microporous structure of porous carbon were studied. Regarding curing temperature, it was observed that the stability of porous carbon decreased with increasing temperature, adversely affecting the uniformity of microporous structure. At a curing temperature of 90 ℃, porosity, mean pore size, and median pore size of the porous carbon varied from 40.22% to 70.38%, 49.8 nm to 279.4 nm, and 107.2 nm to 343.0 nm, respectively. Concerning Zn2+ content, an initial increase was noted in porosity, median pore size and average pore size of the porous carbon with rising Zn2+ content, followed by a decrease. Specifically, with 1.5% (in mass) Zn2+, the maximum pore size and porosity reached 343.0 nm and (70.38±0.37)%, respectively. These findings show that addition of Zn2+ increases the curing degree and backbone polymerization, which may be attributed to a reduction in the reaction barrier for interstitial substitution of phenol structures. However, excessive Zn2+ content leads to high polymerization levels in the resin mixture, impeding volatilization of the alcohol-rich phase and thus degrading the pore structure. In addition, introduction of Zn2+ promotes graphitization, resulting in a more pronounced carbon skeleton than that of non-introduced sample. This research provides a theoretical basis for modulating the microstructure of porous carbon materials and preparation of structural carbide ceramics.

Key words: porous carbon, polymerization-induced phase separation method, Zn2+ catalyst, catalytic mechanism, pore structure

中图分类号: