无机材料学报 ›› 2024, Vol. 39 ›› Issue (4): 423-431.DOI: 10.15541/jim20230486 CSTR: 32189.14.10.15541/jim20230486
所属专题: 【信息功能】介电、铁电、压电材料(202409)
收稿日期:
2023-10-20
修回日期:
2023-12-10
出版日期:
2024-04-20
网络出版日期:
2024-01-08
通讯作者:
谢爱文, 讲师. E-mail: xieaiwen@ahpu.edu.cn;作者简介:
石睿健(1998-), 男, 硕士研究生. E-mail: 1092348993@qq.com
基金资助:
SHI Ruijian(), LEI Junwei, ZHANG Yi, XIE Aiwen(
), ZUO Ruzhong(
)
Received:
2023-10-20
Revised:
2023-12-10
Published:
2024-04-20
Online:
2024-01-08
About author:
SHI Ruijian (1998-), male, Master candidate. E-mail: 1092348993@qq.com
Supported by:
摘要:
反铁电材料由于电场诱导的反铁电-铁电相变而在高性能介质储能电容器应用中显示出极大的潜力。然而, 场致相变带来大的极化滞后使得反铁电材料难以同时获得高储能密度(Wrec)和高储能效率(η)。本工作通过在0.76NaNbO3-0.24(Bi0.5Na0.5)TiO3中引入第三组元Bi(Mg0.5Ti0.5)O3调控其弛豫特性, 改善了NaNbO3基无铅反铁电陶瓷的储能性能。采用传统固相合成法制备了(0.76-x)NaNbO3-0.24(Bi0.5Na0.5)TiO3-xBi(Mg0.5Ti0.5)O3无铅弛豫反铁电陶瓷材料, 并研究了该材料的相结构、微观形貌以及介电、储能和充放电特性。结果表明, 引入Bi(Mg0.5Ti0.5)O3在不改变基体反铁电正交R相结构的基础上明显增强了陶瓷的介电弛豫特性, 显著减小了陶瓷的极化滞后性。特别是在x=0.050组成中实现了具有极低滞后的类线性电滞回线。同时, 陶瓷的显微形貌还得到明显改善, 介电常数降低, 击穿场强显著提高。因此, x=0.050的组成在30 kV/mm的中等电场下同时获得了高的储能密度Wrec=3.5 J/cm3与储能效率η=93%。此外, x=0.050组成还显示出优异的充放电特性, 在20 kV/mm下具有高功率密度PD=131(1±1%) MW/cm3、高放电能量密度WD=1.66(1±6%) J/cm3以及快的放电速率t0.9<290 ns。该充放电特性在25~125 ℃的宽温区内保持良好的稳定性。这些研究结果表明, 0.71NaNbO3-0.24(Bi0.5Na0.5)TiO3-0.050Bi(Mg0.5Ti0.5)O3陶瓷是一种非常有应用潜力的高功率储能电容器介质材料。
中图分类号:
石睿健, 雷俊伟, 张祎, 谢爱文, 左如忠. 具有优异储能性能与充放电特性的类线性NaNbO3基无铅弛豫反铁电陶瓷[J]. 无机材料学报, 2024, 39(4): 423-431.
SHI Ruijian, LEI Junwei, ZHANG Yi, XIE Aiwen, ZUO Ruzhong. Linear-like NaNbO3-based Lead-free Relaxor Antiferroelectric Ceramics with Excellent Energy-storage and Charge-discharge Properties[J]. Journal of Inorganic Materials, 2024, 39(4): 423-431.
图2 不同组分(0.76-x)NN-0.24BNT-xBMT陶瓷的全谱XRD结构精修
Fig. 2 Rietveld refinement results of XRD patterns for (0.76-x)NN-0.24BNT-xBMT ceramics with different compositions (a) x=0; (b) x=0.025; (c) x=0.050; (d) x=0.075
x | Space group | Lattice parameters | V/nm3 | Rwp/% | Rp/% | χ2 |
---|---|---|---|---|---|---|
0 | Pnma | a=0.77920 nm, b=0.77852 nm, c=2.33854 nm, α=β=γ=90o | 1.418608 | 5.35 | 3.70 | 3.62 |
0.025 | Pnma | a=0.77965 nm, b=0.77897 nm, c=2.34045 nm, α=β=γ=90o | 1.421413 | 5.20 | 3.62 | 3.59 |
0.050 | Pnma | a=0.77899 nm, b=0.77995 nm, c=2.33913 nm, α=β=γ=90o | 1.421193 | 6.27 | 4.05 | 4.17 |
0.075 | Pnma | a=0.78060 nm, b=0.78000 nm, c=2.34481 nm, α=β=γ=90o | 1.427666 | 4.99 | 3.56 | 2.96 |
表1 全谱拟合的(0.76-x)NN-0.24BNT-xBMT陶瓷精修结果参数
Table 1 Refined structural parameters of full spectrum fitting for (0.76-x)NN-0.24BNT-xBMT ceramics
x | Space group | Lattice parameters | V/nm3 | Rwp/% | Rp/% | χ2 |
---|---|---|---|---|---|---|
0 | Pnma | a=0.77920 nm, b=0.77852 nm, c=2.33854 nm, α=β=γ=90o | 1.418608 | 5.35 | 3.70 | 3.62 |
0.025 | Pnma | a=0.77965 nm, b=0.77897 nm, c=2.34045 nm, α=β=γ=90o | 1.421413 | 5.20 | 3.62 | 3.59 |
0.050 | Pnma | a=0.77899 nm, b=0.77995 nm, c=2.33913 nm, α=β=γ=90o | 1.421193 | 6.27 | 4.05 | 4.17 |
0.075 | Pnma | a=0.78060 nm, b=0.78000 nm, c=2.34481 nm, α=β=γ=90o | 1.427666 | 4.99 | 3.56 | 2.96 |
图4 (0.76-x)NN-0.24BNT-xBMT陶瓷样品热腐蚀表面的晶粒形貌及相应晶粒分布图
Fig. 4 Grains morphologies of thermally etched surfaces of (0.76-x)NN-0.24BNT-xBMT ceramics and corresponding grain distributions
图6 (0.76-x)NN-0.24BNT-xBMT陶瓷耐击穿性能的威布尔分布图(a)以及EB随组成的变化(b)
Fig. 6 Weibull distributions of (0.76-x)NN-0.24BNT-xBMT ceramics breakdown resistance (a) and variation of EB with composition (b)
图7 (0.76-x)NN-0.24BNT-xBMT陶瓷的储能性能
Fig. 7 Energy-storage properties of (0.76-x)NN-0.24BNT-xBMT ceramics (a, b) P-E hysteresis loops (a) and energy-storage performance (b) of different compositions measured at 20 kV/mm; (c, d) P-E hysteresis loops (c) and energy-storage performance (d) of the x=0.050 ceramic measured under different electric fields
图8 (0.76-x)NN-0.24BNT-xBMT(x=0.050)陶瓷的变电场充放电特性
Fig. 8 Electric field-dependent charge-discharge characteristics of (0.76-x)NN-0.24BNT-xBMT (x=0.050) ceramics (a, b) Overdamped discharging current curves (a) and WD versus time curves (b) of the x=0.050 ceramic under different electric fields; (c, d) Underdamped discharging curves (c) and variation of PD, WD, and t0.9 (d) of the x=0.050 ceramics
图9 (0.76-x)NN-0.24BNT-xBMT(x=0.050)陶瓷的变温充放电特性
Fig. 9 Temperature-dependent charge-discharge characteristics of (0.76-x)NN-0.24BNT-xBMT (x=0.050) ceramics (a, b) Overdamped discharging current curves (a) and WD versus time curves (b) of the x=0.050 ceramic under different electric fields; (c, d) Underdamped discharging curves (c) and variation of PD, WD, and t0.9 (d) of the x=0.050 ceramics
[1] |
LIU Z, LU T, YE J M, et al. Antiferroelectrics for energy storage applications: a review. Advanced Materials Technologies, 2018, 3(9): 1800111.
DOI URL |
[2] |
YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications. Progress in Materials Science, 2019, 102: 72.
DOI |
[3] |
WANG G, LU Z L, LI Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chemical Reviews, 2021, 121(10): 6124.
DOI URL |
[4] |
WANG H S, LIU Y C, YANG T Q, et al. Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Advanced Functional Materials, 2019, 29(7): 1807321.
DOI URL |
[5] |
QI H, ZUO R Z, XIE A W, et al. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Advanced Functional Materials, 2019, 29(35): 1903877.
DOI URL |
[6] |
WANG X C, SHEN J, YANG T Q, et al. High energy-storage performance and dielectric properties of antiferroelectric (Pb0.97La0.02) (Zr0.5Sn0.5-xTix)O3 ceramic. Journal of Alloys and Compounds, 2016, 655: 309.
DOI URL |
[7] |
ZHANG Q F, TONG H F, CHEN J, et al. High recoverable energy density over a wide temperature range in Sr modified (Pb,La) (Zr,Sn,Ti)O3 antiferroelectric ceramics with an orthorhombic phase. Applied Physical Letters, 2016, 109(26): 262901.
DOI URL |
[8] |
TIAN Y, JIN L, ZHANG H F, et al. Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. Journal of Materials Chemistry A, 2017, 5(33): 17525.
DOI URL |
[9] |
LI J L, LI F, XU Z, et al. Multilayer lead‐free ceramic capacitors with ultrahigh energy density and efficiency. Advanced Materials, 2018, 30(32): 1802155.
DOI URL |
[10] |
LI S, HU T F, NIE H C, et al. Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic capacitors via domain engineering. Energy Storage Materials, 2021, 34: 417.
DOI URL |
[11] |
TIAN A, ZUO R Z, QI H, et al. Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. Journal of Materials Chemistry A, 2020, 8(17): 8352.
DOI URL |
[12] |
DARLINGTON C N W, KNIGHT K S. On the lattice parameters of sodium niobate at room temperature and above. Physica B, 1999, 266(4): 368.
DOI URL |
[13] |
QI H, XIE A W, FU J, et al. Emerging antiferroelectric phases with fascinating dielectric, polarization and strain response in NaNbO3-(Bi0.5Na0.5)TiO3 lead-free binary system. Acta Materialia, 2021, 208: 116710.
DOI URL |
[14] |
SHIMIZU H, GUO H Z, REYES-LILLO S E, et al. Lead-free antiferroelectric: xCaZrO3-(1-x)NaNbO3 system (0≤x≤0.10). Dalton Transactions, 2015, 44(23): 10763.
DOI URL |
[15] |
YE J M, WANG G S, CHEN X F, et al. Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1-x)NaNbO3-xCaSnO3 ceramics. Applied Physical Letter, 2019, 114(12): 122901.
DOI URL |
[16] |
ZENG J T, KWOK K W, CHAN H L W. Ferroelectric and piezoelectric properties of Na1-xBaxNb1-xTixO3 ceramics. Journal of the American Ceramic Society, 2006, 89(9): 2828.
DOI URL |
[17] |
DOU M X, FU J, ZUO R Z. Electric field induced phase transition and accompanying giant poling strain in lead-free NaNbO3-BaZrO3 ceramics. Journal of the European Ceramic Society, 2018, 38(9): 3104.
DOI URL |
[18] |
LIU Z Y, LU J S, MAO Y Q, et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases. Journal of the European Ceramic Society, 2018, 38(15): 4939.
DOI URL |
[19] |
QIAO Z L, LI T Y, QI H, et al. Excellent energy storage properties in NaNbO3-based lead-free ceramics by modulating antiferrodistortive of P phase. Journal of Alloys and Compounds, 2022, 898: 162934.
DOI URL |
[20] |
XIE A W, QI H, ZUO R Z, et al. An environmentally-benign NaNbO3 based perovskite antiferroelectric alternative to traditional lead-based counterparts. Journal of Materials Chemistry C, 2019, 7(48): 15153.
DOI URL |
[21] |
SCHÜTZ D, DELUCA M, KRAUSS W, et al. Lone-pair-induced covalency as the cause of temperature-and field-induced instabilities in bismuth sodium titanate. Advanced Functional Materials, 2012, 22(11): 2285.
DOI URL |
[22] | SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 1976, 32(5): 751. |
[23] |
WEIBULL W. A statistical distribution function of wide applicability. Journal of Applied Mechanics, 1951, 18(3): 293.
DOI URL |
[24] |
TUNKASIRI T, RUJIJANAGUL G. Dielectric strength of fine grained barium titanate ceramics. Journal of Materials Science Letters, 1996, 15(20): 1767.
DOI URL |
[1] | 沈浩, 陈倩倩, 周渤翔, 唐晓东, 张媛媛. A位La/Sr共掺杂PbZrO3薄膜的制备及储能特性优化[J]. 无机材料学报, 2024, 39(9): 1022-1028. |
[2] | 叶芬, 江向平, 陈云婧, 黄枭坤, 曾仁芬, 陈超, 聂鑫, 成昊. (0.96NaNbO3-0.04CaZrO3)-xFe2O3反铁电陶瓷的介电及储能性能研究[J]. 无机材料学报, 2022, 37(5): 499-506. |
[3] | 肖舒琳, 戴中华, 李定妍, 张凡博, 杨利红, 任晓兵. 氧化镧掺杂铌酸钾钠陶瓷的电、光性能研究[J]. 无机材料学报, 2022, 37(5): 520-526. |
[4] | 吴明, 肖娅男, 李华强, 刘泳斌, 高景晖, 钟力生, 娄晓杰. 反铁电材料中负电卡效应的研究进展[J]. 无机材料学报, 2022, 37(4): 376-386. |
[5] | 王通,王渊浩,杨海波,高淑雅,王芬,鲁雅文. BaTiO3-ZnNb2O6陶瓷介电及储能性能研究[J]. 无机材料学报, 2020, 35(4): 431-438. |
[6] | 杜红亮, 杨泽田, 高峰, 靳立, 程花蕾, 屈绍波. 无铅非线性介电储能陶瓷: 现状与挑战[J]. 无机材料学报, 2018, 33(10): 1046-1058. |
[7] | 张营堂, 闫 欠. Ba(Zr0.15Ti0.85)O3厚膜的介电与铁电性能研究[J]. 无机材料学报, 2016, 31(11): 1219-1222. |
[8] | 王 超, 陈 静, 陈红丽, 侯育冬, 朱满康. 纳米铌酸钾钠陶瓷的制备及性能[J]. 无机材料学报, 2015, 30(1): 59-64. |
[9] | 张 倩, 丁士华, 宋天秀, 彭小松, 刘 旭, 蒋旭峰. Sc3+和Ru4+联合取代BZN基陶瓷结构与介电性能的研究[J]. 无机材料学报, 2014, 29(11): 1145-1150. |
[10] | 程花蕾, 杜红亮, 周万城, 罗 发, 朱冬梅. 铁酸镧掺杂对铌酸钾钠基陶瓷介电和铁电性能的影响[J]. 无机材料学报, 2012, 27(11): 1228-1232. |
[11] | 李在映, 丁士华, 宋天秀. Na-Ni掺杂对Bi2(Zn1/3Nb2/3)2O7陶瓷性能的影响[J]. 无机材料学报, 2010, 25(8): 825-828. |
[12] | 李月明,陈文,徐庆,周静,廖梅松. (Na0.8K0.2)0.5Bi0.5TiO3陶瓷的介电压电性能[J]. 无机材料学报, 2004, 19(4): 817-822. |
[13] | 陈铭,姚熹,张良莹. 部分化学法制备PbNb(Zr,Sn,Ti)O3反铁电陶瓷及其电致应变性能研究[J]. 无机材料学报, 2002, 17(3): 515-520. |
[14] | 黄红伟,DONG Ming,YE Zuo-Guang,冯锡淇. 钆掺杂钨酸铅闪烁晶体的介电双弛豫峰研究[J]. 无机材料学报, 2002, 17(1): 29-34. |
[15] | 杨同青,姚熹,张良莹. 组份变化对PZST陶瓷反铁电-铁电相变的影响[J]. 无机材料学报, 2000, 15(5): 807-814. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||