无机材料学报 ›› 2023, Vol. 38 ›› Issue (12): 1457-1565.DOI: 10.15541/jim20230242 CSTR: 32189.14.10.15541/jim20230242
所属专题: 【生物材料】骨骼与齿类组织修复(202409)
上官丽1,2(), 聂晓双2,3, 叶奎材2,3, 崔苑苑1(
), 乔玉琴2,4(
)
收稿日期:
2023-05-19
修回日期:
2023-06-16
出版日期:
2023-06-28
网络出版日期:
2023-06-28
通讯作者:
乔玉琴, 副研究员. E-mail: qiaoyq@mail.sic.ac.cn;作者简介:
上官丽(1997-), 女, 硕士研究生. E-mail: 20724695@shu.edu.cn
基金资助:
SHANGGUAN Li1,2(), NIE Xiaoshuang2,3, YE Kuicai2,3, CUI Yuanyuan1(
), QIAO Yuqin2,4(
)
Received:
2023-05-19
Revised:
2023-06-16
Published:
2023-06-28
Online:
2023-06-28
Contact:
QIAO Yuqin, associate professor. E-mail: qiaoyq@mail.sic.ac.cn;About author:
SHANGGUAN Li (1997-), female, Master candidate. E-mail: 20724695@shu.edu.cn
Supported by:
摘要:
钛及其合金以其优异的机械性能和生物相容性而被广泛应用作硬组织植入器械, 但其表面缺乏生物活性以及植入后的炎症反应易导致骨整合不佳。本研究利用不同气氛中的热处理工艺调控氧化钛涂层的润湿性, 并研究表面润湿性能对免疫反应和成骨性能的影响规律。研究结果表明, 与亲水(接触角~10º)的氧化钛涂层相比, 处于亲水/疏水临界状态的氧化钛涂层(接触角’90º), 在仅培养巨噬细胞时, 抑制了巨噬细胞向M1促炎方向极化; 在共培养小鼠骨髓间充质干细胞和巨噬细胞时, 促进了巨噬细胞向M2抗炎方向极化, 同时显著上调了骨髓间充质干细胞成骨相关标记物的基因表达, 显示出更好的免疫促成骨性能。
中图分类号:
上官丽, 聂晓双, 叶奎材, 崔苑苑, 乔玉琴. 氧化钛涂层润湿性对免疫成骨性能的影响规律[J]. 无机材料学报, 2023, 38(12): 1457-1565.
SHANGGUAN Li, NIE Xiaoshuang, YE Kuicai, CUI Yuanyuan, QIAO Yuqin. Effects of Surface Wettability of Titanium Oxide Coatings on Osteoimmunomodulatory Properties[J]. Journal of Inorganic Materials, 2023, 38(12): 1457-1565.
Gene | Primer sequence (F: forward; R: Reverse; 5ʹ-3ʹ) |
---|---|
Arg1 | F: GCC AGG GAC TGA CTA CCT TAA R: AGT TCT GTC TGC TTT GCT GTG |
IL4 | F: TCA TCC TGC TCT TCT TTC TCG R: CTT CTC CTG TGA CCT CGT TCA |
CD206 | F: AGG GAA GAG AAG AAG ATC CAG R: TGG GAG AAG ATG AAG TCA AAC |
TNF-α | F: TAG CCA GGA GGG AGA ACA GA R: CCA GTG AGT GAA AGG GAC AGA |
IL6 | F: ACC AAG ACC ATC CAA TTC ATC R: CTG ACC ACA GTG AGG AAT GTC |
CD86 | F: TCT CCA ACA GCC TCT CTC TTT R: ATC TTC ATT GAC TCC GTT TCC |
OCN | F: ACC GCC TAC AAA CGC ATC TA R: AGA GGA CAG GGA GGA TCA AGT |
OPN | F: CTT GAG CAT TCC AAA GAG AGC R: CTT GTG GCT GTG AAA CTT GTG |
BMP2 | F: TAA GTT CTG TCC CCA GTG ACG R: TTC GGT GCT GGA AAC TAC TGT |
TGF-β1 | F: AAC CAA GGA GAC GGA ATA CA R: CGT GGA GTT TGT TAT CTT TGC |
Runx2 | F: GCA GCA CGC TAT TAA ATC CAA R: GCC AAA CAG ACT CAT CCA TTC |
表1 RT-qPCR所用引物序列
Table 1 Primers for real-time quantitative polymerase chain reaction (RT-qPCR)
Gene | Primer sequence (F: forward; R: Reverse; 5ʹ-3ʹ) |
---|---|
Arg1 | F: GCC AGG GAC TGA CTA CCT TAA R: AGT TCT GTC TGC TTT GCT GTG |
IL4 | F: TCA TCC TGC TCT TCT TTC TCG R: CTT CTC CTG TGA CCT CGT TCA |
CD206 | F: AGG GAA GAG AAG AAG ATC CAG R: TGG GAG AAG ATG AAG TCA AAC |
TNF-α | F: TAG CCA GGA GGG AGA ACA GA R: CCA GTG AGT GAA AGG GAC AGA |
IL6 | F: ACC AAG ACC ATC CAA TTC ATC R: CTG ACC ACA GTG AGG AAT GTC |
CD86 | F: TCT CCA ACA GCC TCT CTC TTT R: ATC TTC ATT GAC TCC GTT TCC |
OCN | F: ACC GCC TAC AAA CGC ATC TA R: AGA GGA CAG GGA GGA TCA AGT |
OPN | F: CTT GAG CAT TCC AAA GAG AGC R: CTT GTG GCT GTG AAA CTT GTG |
BMP2 | F: TAA GTT CTG TCC CCA GTG ACG R: TTC GGT GCT GGA AAC TAC TGT |
TGF-β1 | F: AAC CAA GGA GAC GGA ATA CA R: CGT GGA GTT TGT TAT CTT TGC |
Runx2 | F: GCA GCA CGC TAT TAA ATC CAA R: GCC AAA CAG ACT CAT CCA TTC |
图1 样品的(a)表面形貌、(b)元素组成、(c)物相组成、(d)电化学极化曲线和(e)接触角
Fig. 1 (a) Surface morphologies, (b) element compositions, (c) phase compositions, (d) electrochemical polarization curves, and (e) water contact angles of the samples Coloful figures are available on website
图2 在不同样品表面培养1和4 d的Raw264.7的增殖结果
Fig. 2 Proliferation of Raw264.7 incubated on different samples for 1 and 4 d Data are presented as the mean±SD, n = 3. ****: p < 0.0001 Coloful figures are available on website
图4 在不同样品表面培养4 d的Raw264.7的炎症相关基因的表达水平
Fig. 4 Relative mRNA levels of inflammatory genes of Raw264.7 incubated on different samples for 4 d (a) Arg-1; (b) IL-4; (c) CD206; (d) TNF-α; (e) IL-6; (f) CD86 Data are presented as the mean±SD, n = 3. ****: p <0.0001; ***: p <0.001; **: 0.05< p <0.01 Coloful figures areavailable on website
图5 在不同样品表面培养不同时间的mBMSCs的细胞增殖结果
Fig. 5 Cell proliferation of mBMSCs incubated on different samples for different time Data are presented as the mean±SD, n = 3. ****: p <0.0001; **: 0.05< p <0.01; *: p<0.05 Coloful figures areavailable on website
图7 在不同样品表面培养10 d的mBMSCs的成骨相关基因(a) OPN, (b) Runx2, (c) OCN和(d) BMP2的表达水平
Fig. 7 Relative mRNA levels of osteogenic genes of mBMSCs cultured on different samples for 10 d (a) OPN; (b) Runx2; (c) OCN; (d) BMP2 Data are presented as the mean±SD, n = 3. ****: p <0.0001; ***: p <0.001; **: 0.05< p <0.01; *: p <0.05
图8 在不同样品表面上与mBMSCs共培养3 d的Raw264.7炎症相关基因的表达水平
Fig. 8 Relative mRNA levels of inflammatory genes of Raw264.7 co-cultured with mBMSCs on different samples for 3 d (a) Arg-1; (b) IL-4; (c) CD206; (d) TNF-α; (e) IL-6; (f) CD86 Data are presented as mean±SD, n = 3. ****: p <0.0001; ***: p <0.001; **: 0.05< p <0.01; *: p <0.05
图9 在不同样品上和Raw264.7共培养3 d的mBMSCs的成骨相关基因表达水平
Fig. 9 Relative mRNA levels of osteogenic genes of mBMSCs co-cultured with Raw264.7 on different samples for 3 d (a) OPN; (b) TGF-β1; (c) OCN; (d) BMP2 Data are presented as the mean±SD, n = 3. ****: p <0.0001; ***: p <0.001; **: 0.05< p <0.01; *: p <0.05
[1] |
HUANG L, NING C, DING D, et al. Wettability and in vitro bioactivity of doped TiO2 nanotubes. Journal of Inorganic Materials, 2010, 25(7): 775.
DOI URL |
[2] |
HOQUE M E, SHOWVA N-N, AHMED M, et al. Titanium and titanium alloys in dentistry: current trends, recent developments, and future prospects. Heliyon, 2022, 8(11): e11300.
DOI URL |
[3] | NIE X, ZHANG X, LEI B, et al. Regulation of magnesium matrix composites materials on bone immune microenvironment and osteogenic mechanism. Frontiers in Bioengineering and Biotechnology, 2022, 10: 842706. |
[4] | DU P, LI K, ZHU B, et al. Development of non-toxic low-cost bioactive porous Ti-Fe-Si bulk metallic glass with bone-like mechanical properties for orthopedic implants. Journal of Materials Research and Technology, 2022, 17: 1319. |
[5] |
MI B, CHEN L, XIONG Y, et al. Osteoblast/osteoclast and immune cocktail therapy of an exosome/drug delivery multifunctional hydrogel accelerates fracture repair. ACS Nano, 2022, 16(1): 771.
DOI PMID |
[6] |
GEURTZEN K, LÓPEZ-DELGADO A C, DUSEJA A, et al. Laser-mediated osteoblast ablation triggers a pro-osteogenic inflammatory response regulated by reactive oxygen species and glucocorticoid signaling in zebrafish. Development, 2022, 149(8): dev199803.
DOI URL |
[7] | LIANG H, JIN C, MA L, et al. Accelerated bone regeneration by gold-nanoparticle-loaded mesoporous silica through stimulating immunomodulation. ACS Applied Materials & Interfaces, 2019, 11(44): 41758. |
[8] | PAJARINEN J, LIN T, GIBON E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials, 2019, 196: 80. |
[9] | SHEN H, SHI J, ZHI Y, et al. Improved BMP2-CPC-stimulated osteogenesis in vitro and in vivo via modulation of macrophage polarization. Materials Science and Engineering: C, 2021, 118: 111471. |
[10] |
HOTCHKISS K M, SOWERS K T, OLIVARES-NAVARRETE R. Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dental Materials, 2019, 35(1): 176.
DOI URL |
[11] | JIANG P, ZHANG Y, HU R, et al. Advanced surface engineering of titanium materials for biomedical applications: from static modification to dynamic responsive regulation. Bioactive Materials, 2023, 27: 15. |
[12] | ZHENG X, CHEN L, TAN J, et al. Effect of micro/nano-sheet array structures on the osteo-immunomodulation of macrophages. Regenerative Biomaterials, 2022, 9: rbac075. |
[13] |
LIANG W, GAO M, LOU J, et al. Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration. Journal of Materials Chemistry B, 2020, 8(15): 3038.
DOI PMID |
[14] | MAO L, BAI L, WANG X, et al. Enhanced cell osteogenesis and osteoimmunology regulated by piezoelectric biomaterials with controllable surface potential and charges. ACS Applied Materials & Interfaces, 2022, 14(39): 44111. |
[15] | HUANG Q, OUYANG Z, TAN Y, et al. Activating macrophages for enhanced osteogenic and bactericidal performance by Cu ion release from micro/nano-topographical coating on a titanium substrate. Acta Biomaterialia, 2019, 100: 415. |
[16] | HE Y, YAO M, ZHOU J, et al. Mg(OH)2 nanosheets on Ti with immunomodulatory function for orthopedic applications. Regenerative Biomaterials, 2022, 9: rbac027. |
[17] | LIU J, SHEN X, TANG S, et al. Improvement of rBMSCs responses to poly(propylene carbonate) based biomaterial through incorporation of nanolaponite and surface treatment using sodium hydroxide. ACS Biomaterials Science & Engineering, 2020, 6(1): 329. |
[18] |
FERREIRA S A, GAMA F M, VILANOVA M. Polymeric nanogels as vaccine delivery systems. Nanomedicine: Nanotechnology, Biology and Medicine, 2013, 9(2): 159.
DOI URL |
[19] | XIAN P, CHEN Y, GAO S, et al. Polydopamine (PDA) mediated nanogranular-structured titanium dioxide (TiO2) coating on polyetheretherketone (PEEK) for oral and maxillofacial implants application. Surface and Coatings Technology, 2020, 401: 126282. |
[20] | LI W, XU F, DAI F, et al. Hydrophilic surface-modified 3D printed flexible scaffolds with high ceramic particle concentrations for immunopolarization-regulation and bone regeneration. Biomaterials Science, 2023, 11: 3976. |
[21] |
MOYANO D F, GOLDSMITH M, SOLFIELL D J, et al. Nanoparticle hydrophobicity dictates immune response. Journal of the American Chemical Society, 2012, 134(9): 3965.
DOI PMID |
[22] | BHUSHAN B, JUNG Y C, KOCH K. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2009, 367(1894):1631. |
[23] | ZHANG C, YI Y, YANG H, et al. Wide spectrum solar energy absorption based on germanium plated ZnO nanorod arrays: energy band regulation, finite element simulation, super hydrophilicity, photothermal conversion. Applied Materials Today, 2022, 28: 101531. |
[24] |
LV L, XIE Y, LI K, et al. Unveiling the mechanism of surface hydrophilicity-modulated macrophage polarization. Advanced Healthcare Materials, 2018, 7(19): 1800675.
DOI URL |
[25] |
WANG H Z, HUANG Z P, CAI Q J, et al. Reversible transformation of hydrophobicity and hydrophilicity of aligned carbon nanotube arrays and buckypapers by dry processes. Carbon, 2010, 48(3): 868.
DOI URL |
[26] | YUE X, ZHANG T, YANG D, et al. In situ fabrication dynamic carbon fabrics membrane with tunable wettability for selective oil-water separation. Journal of Industrial and Engineering Chemistry, 2018, 61: 188. |
[27] | 翦奉林, 冯军, 李必文, 等. TA2纯钛微弧氧化制备TiO2涂层的性能研究. 材料保护, 2023, 56(1): 64. |
[28] | AU-ARIA A I, AU-GHARIB M. Dry oxidation and vacuum annealing treatments for tuning the wetting properties of carbon nanotube arrays. JoVE, 2013, ( 74):e50378. |
[29] |
TIAN T, WANG Z, CHEN L, et al. Photobiomodulation activates undifferentiated macrophages and promotes M1/M2 macrophage polarization via PI3K/AKT/mTOR signaling pathway. Lasers in Medical Science, 2023, 38(1): 86.
DOI |
[30] | ZHAO X N, LI Y N, WANG Y T. Interleukin-4 regulates macrophage polarization via the MAPK signaling pathway to protect against atherosclerosis. Genetics and Molecular Research, 2016, 15(1): 15017348. |
[31] |
LI K, YAN T, XUE Y, et al. Intrinsically ferromagnetic Fe-doped TiO2 coatings on titanium for accelerating osteoblast response in vitro. Journal of Materials Chemistry B, 2018, 6(36): 5756.
DOI URL |
[1] | 刘松, 张发强, 罗进, 刘志甫. 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3铁电薄膜制备及储能特性[J]. 无机材料学报, 2024, 39(3): 291-298. |
[2] | 张守超, 陈洪雨, 刘洪飞, 杨羽, 李欣, 刘德峰. 6H-SiC中子辐照肿胀高温回复及光学特性研究[J]. 无机材料学报, 2023, 38(6): 678-686. |
[3] | 俞瑞仙, 王国栋, 王守志, 胡小波, 徐现刚, 张雷. 高温退火对PVT法生长的AlN晶体质量的影响[J]. 无机材料学报, 2023, 38(3): 343-349. |
[4] | 付师, 杨增朝, 李宏华, 王良, 李江涛. 复合烧结助剂对Si3N4陶瓷力学性能和热导率的影响[J]. 无机材料学报, 2022, 37(9): 947-953. |
[5] | 刘丹, 赵亚欣, 郭锐, 刘艳涛, 张志东, 张增星, 薛晨阳. 退火条件对磁控溅射MgO-Ag3Sb-Sb2O4柔性薄膜热电性能的影响[J]. 无机材料学报, 2022, 37(12): 1302-1310. |
[6] | 王艳香, 高培养, 范学运, 李家科, 郭平春, 黄丽群, 孙健. SnO2退火温度对钙钛矿太阳能电池性能的影响[J]. 无机材料学报, 2021, 36(2): 168-174. |
[7] | 李鹏鹏, 王兵, 王应德. 基于火焰退火多孔CeO2纳米片的环境监测用超快CO气体传感器[J]. 无机材料学报, 2021, 36(11): 1223-1230. |
[8] | 王 锦, 陶 科, 李国峰, 梁 科, 蔡宏琨. 氢气氛退火对硅上低温外延制备的硅锗薄膜性能的影响[J]. 无机材料学报, 2017, 32(2): 191-196. |
[9] | 任乃飞, 曹海迪, 黄立静, 李保家, 祖 伟. 超声振动辅助激光退火对FTO薄膜光电性能的影响[J]. 无机材料学报, 2017, 32(10): 1083-1088. |
[10] | 何绍阳, 曾建邦, 蒋方明. 锂离子电池石墨负极微结构数值重建及特征化分析[J]. 无机材料学报, 2015, 30(9): 906-912. |
[11] | 赵 然, 马立民, 郭 福, 胡扬端瑞, 舒雨田. 高优值系数In4Se3多晶的制备及其热电输运特性[J]. 无机材料学报, 2015, 30(3): 249-255. |
[12] | 田 力, 张晓勇, 毛启楠, 李学耕, 于平荣, 王 东. 真空快速退火对CIGS太阳能电池性能的影响[J]. 无机材料学报, 2015, 30(1): 35-40. |
[13] | 秦 毅, 赵 婷, 王 波, 杨建锋. PECVD沉积和原位退火时间对h-BN薄膜组成及光学带隙的影响[J]. 无机材料学报, 2014, 29(7): 729-734. |
[14] | 沈毅强, 石 云, 潘裕柏, 冯锡淇, 吴乐翔, 寇华敏, 章志明, 魏 龙. 高光输出快衰减Pr: Lu3Al5O12闪烁陶瓷的制备和成像[J]. 无机材料学报, 2014, 29(5): 534-538. |
[15] | 李健平, 钱正洪, 孙宇澄, 白 茹, 刘建林, 朱建国. 具有SAF结构的IrMn基自旋阀材料的磁场退火研究[J]. 无机材料学报, 2014, 29(4): 411-416. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||