[1] |
GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries. Chemistry of Materials, 2010, 22(3):587.
DOI
URL
|
[2] |
ZHAO J, LIAO L, SHI F, et al. Surface fluorination of reactive battery anode materials for enhanced stability. Journal of the American Chemical Society, 2017, 139(33):11550.
DOI
PMID
|
[3] |
TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861):359.
DOI
URL
|
[4] |
ZHI J, YAZDI A Z, VALAPPIL G, et al. Artificial solid electrolyte interphase for aqueous lithium energy storage systems. Science Advances, 2017, 3(9):e1701010.
DOI
URL
|
[5] |
JUN K, SUN Y, XIAO Y, et al. Lithium superionic conductors with corner-sharing frameworks. Nature Materials, 2022, 21: 924.
|
[6] |
LIU J, BAO Z, CUI Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy, 2019, 4(3):180.
DOI
|
[7] |
DUNN B, KAMATH H, TARASCON J M. Electrical energy storage for the grid: a battery of choices. Science, 2011, 334(6058):928.
DOI
PMID
|
[8] |
MAUGER A, JULIEN C M, PAOLELLA A, et al. Building better batteries in the solid state: a review. Materials, 2019, 12(23):3892.
DOI
URL
|
[9] |
MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2017, 2(4):16103.
DOI
|
[10] |
ZHOU D, SHANMUKARAJ D, TKACHEVA A, et al. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem, 2019, 5(9):2326.
DOI
|
[11] |
TAN S J, YUE J, TIAN Y F, et al. In-situ encapsulating flame- retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. Energy Storage Materials, 2021, 39: 186.
|
[12] |
ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 2019, 4(5):365.
DOI
|
[13] |
ZHOU Z, FENG Y, WANG J, et al. A robust, highly stretchable ion-conducive skin for stable lithium metal batteries. Chemical Engineering Journal, 2020, 396: 125254.
|
[14] |
WILKEN S, TRESKOW M, SCHEERS J, et al. Initial stages of thermal decomposition of LiPF6-based lithium ion battery electrolytes by detailed Raman and NMR spectroscopy. RSC Advances, 2013, 3(37):16359.
DOI
URL
|
[15] |
LIU F Q, WANG W P, YIN Y X, et al. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Science Advances, 2018, 4(10):eaat5383.
DOI
URL
|
[16] |
XU C, SUN B, GUSTAFSSON T, et al. Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. Journal of Materials Chemistry A, 2014, 2(20):7256.
DOI
URL
|
[17] |
WEI Z, CHEN S, WANG J, et al. Superior lithium ion conduction of polymer electrolyte with comb-like structure via solvent-free copolymerization for bipolar all-solid-state lithium battery. Journal of Materials Chemistry A, 2018, 6(27):13438.
DOI
URL
|
[18] |
DI NOTO V, LAVINA S, GIFFIN G A, et al. Polymer electrolytes: present, past and future. Electrochimica Acta, 2011, 57(15):4.
DOI
URL
|
[19] |
XUE Z, HE D, XIE X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3(38):19218.
DOI
URL
|
[20] |
MINDEMARK J, LACEY M J, BOWDEN T, et al. Beyond PEO-Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science, 2018, 81: 114.
|
[21] |
ARAVINDAN V, GNANARAJ J, MADHAVI S, et al. Lithium-ion conducting electrolyte salts for lithium batteries. Chemistry-A European Journal, 2011, 17(51):14326.
|
[22] |
XU K. Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014, 114(23):11503.
DOI
PMID
|
[23] |
YANG H, ZHUANG G V, ROSS JR P N. Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6. Journal of Power Sources, 2006, 161(1):573.
DOI
URL
|
[24] |
LI Q, LIU G, CHENG H, et al. Low-temperature electrolyte design for lithium-ion batteries: prospect and challenges. Chemistry-A European Journal, 2021, 27(64):15842.
DOI
URL
|
[25] |
JIAO S, REN X, CAO R, et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018, 3(9):739.
DOI
|
[26] |
LIU Y, YU P, SUN Q, et al. Predicted operando polymerization at lithium anode via boron insertion. ACS Energy Letters, 2021, 6(6):2320.
DOI
URL
|
[27] |
CAO W, LU J, ZHOU K, et al. Organic-inorganic composite SEI for a stable Li metal anode by in-situ polymerization. Nano Energy, 2022, 95: 106983.
|
[28] |
CHENG S, SMITH D M, LI C Y. How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes? Macromolecules, 2014, 47(12):3978.
DOI
URL
|
[29] |
JOHANSSON P. First principles modelling of amorphous polymer electrolytes: Li+-PEO, Li+-PEI, and Li+-PES complexes. Polymer, 2001, 42(9):4367.
DOI
URL
|
[30] |
SUN B, MINDEMARK J, EDSTRÖM K, et al. Polycarbonate- based solid polymer electrolytes for Li-ion batteries. Solid State Ionics, 2014, 262: 738.
|
[31] |
SILVA M M, BARROS S C, SMITH M J, et al. Characterization of solid polymer electrolytes based on poly (trimethylenecarbonate) and lithium tetrafluoroborate. Electrochimica Acta, 2004, 49(12): 1887.
DOI
URL
|
[32] |
BARBOSA P, RODRIGUES L, SILVA M M, et al. Characterization of pTMCnLiPF6 solid polymer electrolytes. Solid State Ionics, 2011, 193(1):39.
DOI
URL
|