无机材料学报 ›› 2020, Vol. 35 ›› Issue (9): 993-998.DOI: 10.15541/jim20190521 CSTR: 32189.14.10.15541/jim20190521
所属专题: 计算材料论文精选(2020)
收稿日期:
2019-10-12
修回日期:
2020-01-09
出版日期:
2020-09-20
网络出版日期:
2020-01-20
作者简介:
赵宇鹏(1995-), 男, 硕士研究生. E-mail: 基金资助:
ZHAO Yupeng1(),HE Yong1,ZHANG Min1(
),SHI Junjie2
Received:
2019-10-12
Revised:
2020-01-09
Published:
2020-09-20
Online:
2020-01-20
Supported by:
摘要:
采用第一性原理计算方法, 系统研究了新型二维Zr2CO2/InS异质结的电子结构和光催化性能。计算结果显示, 二维Zr2CO2/InS异质结是一种直接带隙半导体材料, 晶格失配率低于3%, 形成能为-0.49 eV, 说明其具有稳定的结构; Zr2CO2/InS异质结的带隙值为1.96 eV, 对应较宽的可见光吸收范围, 且吸收系数高达105 cm-1; 异质结表现出Ⅱ型能带对齐, 价带和导带的带偏置分别为1.24和0.17 eV, 表明光生电子从Zr2CO2层转移到InS层, 而光生空穴则与之相反, 从而实现了电子和空穴在空间上的有效分离。另外, InS是间接带隙半导体材料, 能够进一步降低电子和空穴的复合率。综上所述, 新型二维Zr2CO2/InS异质结是一种潜在的可见光光催化剂。
中图分类号:
赵宇鹏,贺勇,张敏,史俊杰. 新型二维Zr2CO2/InS异质结可见光催化产氢性能的第一性原理研究[J]. 无机材料学报, 2020, 35(9): 993-998.
ZHAO Yupeng,HE Yong,ZHANG Min,SHI Junjie. First-principles Study on the Photocatalytic Hydrogen Production of a Novel Two-dimensional Zr2CO2/InS Heterostructure[J]. Journal of Inorganic Materials, 2020, 35(9): 993-998.
a/nm | b/nm | Eg/eV (GGA) | Eg/eV (GGA-1/2) | Eg/eV (GW) | ||
---|---|---|---|---|---|---|
Zr2CO2 | This study | 0.331 | 0.331 | 1.02 | 2.13 | |
Previous study | 0.331[ | 0.331[ | 0.97[ | 2.13[ | ||
InS | This study | 0.391 | 0.391 | 1.74 | 3.20 | |
Previous study | 0.394[ | 0.394[ | 1.74[ | 3.20[ |
表1 二维Zr2CO2和InS的晶格常数(a、b)和带隙(Eg)及相应文献报道结果
Table 1 Lattice constants (a, b) and band gaps (Eg) of two-dimensional Zr2CO2 and InS, as well as their corresponding values reported in literatures
a/nm | b/nm | Eg/eV (GGA) | Eg/eV (GGA-1/2) | Eg/eV (GW) | ||
---|---|---|---|---|---|---|
Zr2CO2 | This study | 0.331 | 0.331 | 1.02 | 2.13 | |
Previous study | 0.331[ | 0.331[ | 0.97[ | 2.13[ | ||
InS | This study | 0.391 | 0.391 | 1.74 | 3.20 | |
Previous study | 0.394[ | 0.394[ | 1.74[ | 3.20[ |
图2 (a)Zr2CO2/InS异质结的投影能带、态密度以及(b)导带底(CBM)和(c)价带顶(VBM)的带分解电荷局域密度分布图 (ρ=3.7×10-2 e·nm-3)
Fig. 2 (a) Projected band structure and density of states of Zr2CO2/InS heterostructure, and band-decomposed charge of local density distributions of (b) conduction band minimum (CBM) and (c) valence band maximum (VBM) for Zr2CO2/InS heterostructure (ρ=3.7×10-2 e·nm-3)
图3 Zr2CO2/InS异质结的差分电荷密度示意图和电子积累及损耗(分别用青色和紫色等值面表示, ρ=1.2×10-1 e·nm-3)
Fig. 3 Schematic diagram of the charge density difference of Zr2CO2/InS heterostructure, and the accumulation and depletion of electrons displaying with cyan and purple color isosurfaces, respectively (ρ=1.2×10-1 e·nm-3) Red curve showing the plane-averaged charge density difference plot; The vdW Gap stands for van der Waals gap
图5 以标准氢电极(SHE)电位为参考的二维InS、Zr2CO2和Zr2CO2/InS异质结的带隙值与能带偏置
Fig. 5 In contrast to standard hydrogen electrode (SHE) potential, band gaps and band offset of two-dimensional InS and Zr2CO2 in (a) and Zr2CO2/InS heterostructure in (b) VBO: Valence Band Offset, CBO: Conduction Band offset. The dotted lines represent the standard water redox potential
[1] |
FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972,238(5358):37-38.
DOI URL PMID |
[2] |
CHEN XIAO-BO, LIU LEI, PETER Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011,331(6018):746-750.
URL PMID |
[3] |
LUO BIN, LIU GANG WANG LIAN-ZHOU. Recent advances in 2D materials for photocatalysis. Nanoscale, 2016,8(13):6904-6920.
URL PMID |
[4] |
DENG DE-HUI, NOVOSELOV K S, FU QIANG, et al. Catalysis with two-dimensional materials and their heterostructures. Nature Nanotechnology, 2016,11(3):218-230.
URL PMID |
[5] | HAGGTA S W, MALIK M A, MOTEVALLI M, et al. Synthesis and characterization of some mixed alkyl thiocarbamates of gallium and indium, precursors for III/VI materials: the X-ray single-crystal structures of dimethyl-and diethylindium diethyldithiocarbamate. Chemistry of materials, 1995,7(4):716-724. |
[6] | HOLLINGSWORTH J A, POOJARY D M, CLEARFIELD A, et al. Catalyzed growth of a metastable InS crystal structure as colloidal crystals. Journal of the American Chemical Society, 2000,122(14):3562-3563. |
[7] | ZHUANG H L, HENNIG R G. Single-layer group-III monochalcogenide photocatalysts for water splitting. Chemistry of Materials, 2013,25(15):3232-3238. |
[8] | BARSOUM M W, RADOVIC M. Elastic and mechanical properties of the MAX phases. Annual Review of Materials Research, 2011,41:195-227. |
[9] | GUO ZHONG-LU, ZHOU JIAN, ZHU LING-GANG, et al. MXene: a promising photocatalyst for water splitting. Journal of Materials Chemistry A, 2016,4(29):11446-11452. |
[10] |
WANG JIA-JUN. GUAN ZHAO-YONG, HUANG JING, et al. Enhanced photocatalytic mechanism for the hybrid g-C3N4/MoS2 nanocomposite. Journal of Materials Chemistry A, 2014,2(21):7960-7966.
DOI URL |
[11] | HE YONG, ZHANG MIN, SHI JUN-JIE, et al. Two-dimensional g-C3N4/InSe heterostructure as a novel visible-light photocatalyst for overall water splitting: a first-principles study. Journal of Physics D: Applied Physics, 2018,52(1):015304. |
[12] |
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999,59(3):1758-1775.
DOI URL |
[13] |
PERDEW J P, BURKE K, EMZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996,77(18):3865-3868.
DOI URL PMID |
[14] |
GRIMME S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. Journal of Computational Chemistry, 2006,27(15):1787-1799.
URL PMID |
[15] |
ZHANG YU-JIAN, XIA WEI-YI, WU YA-BEI, et al. Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations. Nanoscale, 2019,11(9):3993-4000.
URL PMID |
[16] |
TOROKER M C, KANAN D K, ALIDOUST N, et al. First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. Physical Chemistry Chemical Physics, 2011,13(37):16644-16654.
URL PMID |
[17] |
SINGH A K, MATHEW K, ZHUANG HOU-LONG, et al. Computational screening of 2D materials for photocatalysis. Journal of Physical Chemistry Letters, 2015,6(6):1087-1098.
URL PMID |
[18] | HONG LIANG, KLIE R F, ÖĞÜT S. First-principles study of size-and edge-dependent properties of MXene nanoribbons. Physical Review B, 2016,93(11):115412. |
[19] | FU CEN-FENG, LI XING-XING, LUO QI-QUAN, et al. Two-dimensional multilayer M2CO2(M= Sc, Zr, Hf) as photocatalysts for hydrogen production from water splitting: a first principles study. Journal of Materials Chemistry A, 2017,5(47):24972-24980. |
[20] |
LEI SI-DONG, GE LIE-HUI, NAJMAEI S, et al. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS Nano, 2014,8(2):1263-1272.
URL PMID |
[21] |
HO CHING-HWA. Thickness-dependent carrier transport and optically enhanced transconductance gain in III-VI multilayer InSe. 2D Materials, 2016,3(2):025019.
DOI URL |
[22] |
BANDURIN D A, TYURNINA A V, GELIANG L Y, et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nature Nanotechnology, 2017,12(3):223-227.
DOI URL |
[23] | DAS P, WICKRAMARATNE D, DEBNATH B, et al. Charged impurity scattering in two-dimensional materials with ring-shaped valence bands: GaS, GaSe, InS, and InSe. Physical Review B, 2019,99(8):085409. |
[24] |
ZHAN XIAO-XUE, SI CHEN, ZHOU JIAN, et al. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horizons, 2020. DOI: 10.1039/C9NH00571D
URL PMID |
[25] |
JUN B M, KIM S, HEO J, et al. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Research, 2019,12(3):471-487.
DOI URL |
[26] |
HOU Y D, LAURSEN A B, ZHANG J S, et al. Layered nanojunctions for hydrogen-evolution catalysis. Angewandte Chemie International Edition, 2013,52(13):3621-3625.
DOI URL PMID |
[27] |
ZHOU WEI-JIA, YIN ZONG-YOU, DU YA-PING, et al. Synthesis of few‐layer MoS2 nanosheet‐coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small, 2013,9(1):140-147.
DOI URL PMID |
[28] | WEI DING, YAO LI-HUA, YANG SONG, et al. Facile fabrication of InSe nanosheets: towards efficient visible-light-driven H2 production by coupling with P25. Inorganic Chemistry Frontiers, 2015,2(7):657-661. |
[29] | CAO SHAO-WEN, SHEN BAO-JIA, TONG TONG, et al. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Advanced Functional Materials, 2018,28(21):1800136. |
[30] |
VISHWANATH S, LIU XIN-YU, ROUVIMOV S, et al. Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy. Journal of Materials Research, 2016,31(7):900-910.
DOI URL |
[31] | YUAN KAI, YIN RUO-YU, LI XIN-QI, et al. Realization of quantum hall effect in chemically synthesized InSe. Advanced Functional Materials, 2019,29:1904032-1904040. |
[32] |
GUAN ZHAO-YONG, LIAN CHAO-SHENG, HU SHUANG-LIN, et al. Tunable structural, electronic, and optical properties of layered two-dimensional C2N and MoS2 van der waals heterostructure as photovoltaic material. The Journal of Physical Chemistry C, 2017,121(6):3654-3660.
DOI URL |
[33] |
LIU JIAN-JUN, HUA EN-DA. Electronic structure and absolute band edge posi tion of tetragonal AgInS2 photocatalyst: a hybrid density functional study. Materials Science in Semiconductor Processing, 2015,40:446-452.
DOI URL |
[1] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[2] | 吴晓维, 张涵, 曾彪, 明辰, 孙宜阳. 杂化泛函HSE和PBE0计算CsPbI3缺陷性质的比较研究[J]. 无机材料学报, 2023, 38(9): 1110-1116. |
[3] | 杨颖康, 邵怡晴, 李柏良, 吕志伟, 王路路, 王亮君, 曹逊, 吴宇宁, 黄荣, 杨长. Cl掺杂对CuI薄膜发光性能增强研究[J]. 无机材料学报, 2023, 38(6): 687-692. |
[4] | 文志勤, 黄彬荣, 卢涛仪, 邹正光. 压力对PbTiO3结构和热物性质影响的第一性原理研究[J]. 无机材料学报, 2022, 37(7): 787-794. |
[5] | 肖美霞, 李苗苗, 宋二红, 宋海洋, 李钊, 毕佳颖. 表面端基卤化Ti3C2 MXene应用于锂离子电池高容量电极材料的研究[J]. 无机材料学报, 2022, 37(6): 660-668. |
[6] | 张弦, 张策, 姜文君, 冯德强, 姚伟. 四元BiMnVO5的合成、电子结构与可见光催化性能研究[J]. 无机材料学报, 2022, 37(1): 58-64. |
[7] | 向晖, 全慧, 胡艺媛, 赵炜骞, 徐波, 殷江. 类石墨烯单层结构ZnO和GaN的压电特性对比研究[J]. 无机材料学报, 2021, 36(5): 492-496. |
[8] | 赵林艳, 刘阳思, 席晓丽, 马立文, 聂祚仁. 基于第一性原理计算的纳米氧化钨研究进展[J]. 无机材料学报, 2021, 36(11): 1125-1136. |
[9] | 陈雷雷, 邓子旋, 李勉, 李朋, 常可可, 黄峰, 都时禹, 黄庆. 新型MAX相的相图热力学研究[J]. 无机材料学报, 2020, 35(1): 35-40. |
[10] | 焦思怡, 葛万银, 殷立雄, 徐美美, 常哲, 张荔. 新型二维TiSe2纳米片的可控合成及其生长机理[J]. 无机材料学报, 2019, 34(8): 834-838. |
[11] | 王中, 查显弧, 吴泽, 黄庆, 都时禹. Mn掺杂锶铁氧体SrFe12O19电子结构及磁性的第一性原理研究[J]. 无机材料学报, 2019, 34(10): 1047-1054. |
[12] | 贾思齐, 蒋政, 迟莉娜, 叶瑛, 胡双双. 从天然辉锑矿中制备硫化锑纳米棒及其性能探究[J]. 无机材料学报, 2018, 33(11): 1213-1218. |
[13] | 江峰, 于云, 冯爱虎, 于洋, 米乐, 宋力昕. 非水沉淀法制备纳米氧化钛及其光催化性能研究[J]. 无机材料学报, 2018, 33(10): 1136-1140. |
[14] | 张建峰, 曹惠杨, 王红兵. 新型二维材料MXene的研究进展[J]. 无机材料学报, 2017, 32(6): 561-570. |
[15] | 蔡维维, 李 蛟, 何 静, 王卫伟. 磷酸银纳米结构的调控及其光催化性能研究[J]. 无机材料学报, 2017, 32(3): 263-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||