无机材料学报 ›› 2020, Vol. 35 ›› Issue (1): 53-60.DOI: 10.15541/jim20190160
所属专题: MAX相和MXene材料; 计算材料论文精选(2020)
齐欣欣1,宋广平1,尹维龙1,王明福2,赫晓东1,郑永挺1,王荣国1,柏跃磊1()
收稿日期:
2019-04-17
修回日期:
2019-05-14
出版日期:
2020-01-20
网络出版日期:
2019-07-23
作者简介:
齐欣欣(1995-), 博士研究生. E-mail:16S118138@stu.hit.edu.cn
基金资助:
QI Xin-Xin1,SONG Guang-Ping1,YIN Wei-Long1,WANG Ming-Fu2,HE Xiao-Dong1,ZHENG Yong-Ting1,WANG Rong-Guo1,BAI Yue-Lei1()
Received:
2019-04-17
Revised:
2019-05-14
Published:
2020-01-20
Online:
2019-07-23
About author:
QI Xin-Xin(1995-), PhD Candidate. E-mail:16S118138@stu.hit.edu.cn
Supported by:
摘要:
Cr4AlB4是一种近期发现的三元层状硼化物MAB相陶瓷。该材料可形成具有保护性的氧化膜, 在高温结构材料领域有巨大应用潜力。本工作采用基于第一性原理的“线性优化法”和“键刚度”理论模型分别研究了Cr4AlB4的物相稳定性和力学行为。声子谱中没有虚频出现, 表明Cr4AlB4具有本征稳定性。而与其它Cr-Al-B系内的竞争相相比, Cr4AlB4具有最低的能量, 表明其在热力学上也是稳定的。采用“键刚度”模型对化学键刚度的定量计算显示, Cr4AlB4中Cr和B以及B和B原子之间形成了强共价键, 而Cr和Al原子则形成相对较弱的Cr-Al(625 GPa)和 B-Al(574 GPa)键。Cr4AlB4可以看成是由强共价键紧密连接在一起的Cr-B结构单元, 被弱Cr(B)-Al键分割而成的层状结构, 与MAX相结构类似。Cr4AlB4具有类似于MAX相的高损伤容限和断裂韧性。
中图分类号:
齐欣欣, 宋广平, 尹维龙, 王明福, 赫晓东, 郑永挺, 王荣国, 柏跃磊. 新型三元层状硼化物Cr4AlB4的物相稳定性和力学行为分析[J]. 无机材料学报, 2020, 35(1): 53-60.
QI Xin-Xin, SONG Guang-Ping, YIN Wei-Long, WANG Ming-Fu, HE Xiao-Dong, ZHENG Yong-Ting, WANG Rong-Guo, BAI Yue-Lei. Analysis on Phase Stability and Mechanical Property of Newly-discovered Ternary Layered Boride Cr4AlB4[J]. Journal of Inorganic Materials, 2020, 35(1): 53-60.
Lattice parameters | Internal coordinates | Density /(g·cm-3) | DOS at Ef /(States·eV-1· Unit cell-1) | Bulk modulus /GPa | Pressure derivative | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | V/nm3 | yCr1 | yCr2 | yAl | yB1 | yB2 | |||||||
Cr4AlB4 | LDA | 0.28766 | 1.8578 | 0.28867 | 0.15427 | - | - | - | - | - | - | - | - | - | |
GGA | PBE | 0.29312 | 1.8923 | 0.29512 | 0.16370 | - | - | - | - | - | - | - | - | ||
RPBE | 0.29334 | 1.8963 | 0.29551 | 0.16439 | 0.2926 | 0.5875 | 0.5 | 0.3803 | 0.6720 | 5.64 | 7.031 | 234.16 | 4.55 | ||
PW91 | 0.29197 | 1.8863 | 0.29435 | 0.16212 | - | - | - | - | - | - | - | - | - | ||
Exp[ | 0.29343 | 1.8891 | 0.29733 | 0.16481 | 0.2936 | 0.5859 | 0.5 | 0.3839 | 0.6646 | - | - | - | - | ||
CrB | Cal[ | 0.2924 | 0.7836 | 0.2911 | 0.06670 | - | - | - | - | - | 6.25 | - | - | - |
表1 Cr4AlB4及CrB晶格参数及基本属性
Table 1 Lattice parameters and some basic property of Cr4AlB4 and CrB
Lattice parameters | Internal coordinates | Density /(g·cm-3) | DOS at Ef /(States·eV-1· Unit cell-1) | Bulk modulus /GPa | Pressure derivative | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a/nm | b/nm | c/nm | V/nm3 | yCr1 | yCr2 | yAl | yB1 | yB2 | |||||||
Cr4AlB4 | LDA | 0.28766 | 1.8578 | 0.28867 | 0.15427 | - | - | - | - | - | - | - | - | - | |
GGA | PBE | 0.29312 | 1.8923 | 0.29512 | 0.16370 | - | - | - | - | - | - | - | - | ||
RPBE | 0.29334 | 1.8963 | 0.29551 | 0.16439 | 0.2926 | 0.5875 | 0.5 | 0.3803 | 0.6720 | 5.64 | 7.031 | 234.16 | 4.55 | ||
PW91 | 0.29197 | 1.8863 | 0.29435 | 0.16212 | - | - | - | - | - | - | - | - | - | ||
Exp[ | 0.29343 | 1.8891 | 0.29733 | 0.16481 | 0.2936 | 0.5859 | 0.5 | 0.3839 | 0.6646 | - | - | - | - | ||
CrB | Cal[ | 0.2924 | 0.7836 | 0.2911 | 0.06670 | - | - | - | - | - | 6.25 | - | - | - |
图1 Cr4AlB4(a)和CrB(b)的晶体结构 Cr4AlB4 can be regarded as CrB with Al monolayer inserted along the b axis
Fig. 1 Crystal structure of Cr4AlB4 (a) and CrB (b)
Cr4AlB4 | Cr2AlB2 | CrB | |||||
---|---|---|---|---|---|---|---|
d/nm | k/GPa | d/nm[ | k/GPa[ | d/nm | d/nm[ | k/GPa | |
Cr1-Al | 0.2662 | 625 | 0.26443 | 617 | - | - | - |
Cr1-B1 | 0.2169 | 885 | 0.22014 | 813 | 0.21712 | 0.2158 | 917 |
Cr1-B2 | 0.2180 | 1190 | 0.21876 | 1149 | 0.2212 | 0.2200 | 1123 |
Cr2-B1 | 0.2224 | 1074 | - | - | - | - | - |
Cr2-B2 | 0.2187 | 840 | - | - | - | - | - |
Cr2-B3 | 0.2288 | 826 | - | - | - | - | - |
B1-B2 | 0.1771 | 1123 | 0.17616 | 1099 | 0.17841 | 0.1722 | 1149 |
Al-B1 | 0.2269 | 574 | 0.22765 | 571 | - | - | - |
表2 Cr4AlB4、Cr2AlB2以及二元硼化物CrB的键长和键刚度
Table 2 Bond length and bond stiffness in Cr4AlB4, and Cr2AlB2 as well as binary borides CrB
Cr4AlB4 | Cr2AlB2 | CrB | |||||
---|---|---|---|---|---|---|---|
d/nm | k/GPa | d/nm[ | k/GPa[ | d/nm | d/nm[ | k/GPa | |
Cr1-Al | 0.2662 | 625 | 0.26443 | 617 | - | - | - |
Cr1-B1 | 0.2169 | 885 | 0.22014 | 813 | 0.21712 | 0.2158 | 917 |
Cr1-B2 | 0.2180 | 1190 | 0.21876 | 1149 | 0.2212 | 0.2200 | 1123 |
Cr2-B1 | 0.2224 | 1074 | - | - | - | - | - |
Cr2-B2 | 0.2187 | 840 | - | - | - | - | - |
Cr2-B3 | 0.2288 | 826 | - | - | - | - | - |
B1-B2 | 0.1771 | 1123 | 0.17616 | 1099 | 0.17841 | 0.1722 | 1149 |
Al-B1 | 0.2269 | 574 | 0.22765 | 571 | - | - | - |
Included phases | Compound | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|
CrB, CrB2, CrB4, Cr2B, Cr5B3, Cr3B4, Cr2B3, Cr2Al, Cr5Al8, Cr7Al45, AlB2, AlB12, Cr2AlB2, Cr3AlB4, Cr4AlB6 | Cr4AlB4 | 2CrB+Cr2AlB2 | -0.2207 |
Cr2AlB2[ | 2CrB+Al | -0.0461 |
表3 Cr4AlB4的形成焓ΔHcomp, ΔHcomp< 0的相以粗体表示
Table 3 Formation enthalpy ΔHcomp for Cr4AlB4, phases with ΔHcomp < 0 are in bold
Included phases | Compound | Most competing phases | ΔHcomp/(eV·atom-1) |
---|---|---|---|
CrB, CrB2, CrB4, Cr2B, Cr5B3, Cr3B4, Cr2B3, Cr2Al, Cr5Al8, Cr7Al45, AlB2, AlB12, Cr2AlB2, Cr3AlB4, Cr4AlB6 | Cr4AlB4 | 2CrB+Cr2AlB2 | -0.2207 |
Cr2AlB2[ | 2CrB+Al | -0.0461 |
图3 压力对Cr4AlB4的归一化体积V/V0及归一化晶格常数a/a0, b/b0和c/c0 (a)和归一化键长d/d0 (b)的影响
Fig. 3 Pressure dependence of the normalized cell volume V/V0 as well as the normalized lattice parameters a/a0, b/b0 and c/c0 of Cr4AlB4 (a) and the normalized bond length d/d0 in Cr4AlB4 (b)
Boder charge/e | Cr1 | Cr2 | Al | B1 | B2 |
---|---|---|---|---|---|
CrB | -0.79 | - | - | 0.78 | - |
Cr2AlB2[ | -0.37 | - | -1.50 | 1.12 | - |
Cr4AlB4 | -0.39 | -0.76 | -1.48 | 1.15 | 0.74 |
表4 Cr4AlB4, Cr2AlB2 和 CrB的贝德电荷分析
Table 4 Bader charge analysis of Cr4AlB4, Cr2AlB2 and CrB
Boder charge/e | Cr1 | Cr2 | Al | B1 | B2 |
---|---|---|---|---|---|
CrB | -0.79 | - | - | 0.78 | - |
Cr2AlB2[ | -0.37 | - | -1.50 | 1.12 | - |
Cr4AlB4 | -0.39 | -0.76 | -1.48 | 1.15 | 0.74 |
Compound | c11 | c12 | c13 | c22 | c23 | c33 | c44 | c55 | c66 | G | B | G/B | E | μ | θD/K |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr4AlB4 | 594 | 112 | 126 | 472 | 120 | 467 | 185 | 176 | 231 | 194 | 245 | 0.79 | 460 | 0.19 | 923 |
Cr2AlB2[ | 505 | 101 | 111 | 410 | 109 | 437 | 158 | 162 | 209 | 174 | 221 | 0.79 | 414 | 0.19 | 892 |
MoAlB[ | 327 | 143 | 150 | 313 | 128 | 384 | 187 | 156 | 166 | 142 | 207 | 0.66 | 347 | 0.22 | 675 |
CrB | 495 | 165 | 165 | 581 | 147 | 579 | 220 | 220 | 265 | 219 | 289 | 0.78 | 525 | 0.2 | 963 |
Cr2AlC[ | 396 | 117 | 156 | - | - | 382 | 173 | - | - | 146.9 | 225.8 | - | 357.7 | 0.236 | 774 |
表5 Cr4AlB4的二阶弹性常数(cij/GPa)、体积模量(B/GPa)、剪切模量(G/GPa)、杨氏模量(E/GPa)、泊松比(μ)和德拜温度(θD/K)
Table 5 The calculated second-order elastic constants (cij/GPa), shear moduli (G/GPa), bulk moduli (B/GPa), Young’s moduli (E/GPa), Poisson ratio (μ), and Debye temperature (θD/K) of Cr4AlB4
Compound | c11 | c12 | c13 | c22 | c23 | c33 | c44 | c55 | c66 | G | B | G/B | E | μ | θD/K |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr4AlB4 | 594 | 112 | 126 | 472 | 120 | 467 | 185 | 176 | 231 | 194 | 245 | 0.79 | 460 | 0.19 | 923 |
Cr2AlB2[ | 505 | 101 | 111 | 410 | 109 | 437 | 158 | 162 | 209 | 174 | 221 | 0.79 | 414 | 0.19 | 892 |
MoAlB[ | 327 | 143 | 150 | 313 | 128 | 384 | 187 | 156 | 166 | 142 | 207 | 0.66 | 347 | 0.22 | 675 |
CrB | 495 | 165 | 165 | 581 | 147 | 579 | 220 | 220 | 265 | 219 | 289 | 0.78 | 525 | 0.2 | 963 |
Cr2AlC[ | 396 | 117 | 156 | - | - | 382 | 173 | - | - | 146.9 | 225.8 | - | 357.7 | 0.236 | 774 |
[1] |
FAHRENHOLTZ W G, HILMAS G E, TALMY I G , et al. Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc., 2007,90(5):1347-1364.
DOI URL |
[2] |
BARSOUM M W . The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem., 2000,28(1):201-281.
DOI URL |
[3] |
ADE M, HILLEBRECHT H . Ternary borides Cr2AlB2, Cr3AlB4, and Cr4AlB6: the first members of the series (CrB2)nCrAl with n = 1, 2, 3 and a unifying concept for ternary borides as MAB-phases. Inorganic Chemistry, 2015,54(13):6122-6135.
DOI URL PMID |
[4] |
JEITSCHKO W . The crystal structure of Fe2AlB2. Acta Crystallographica, 1969,25(1):163-165.
DOI URL PMID |
[5] |
NOWOTNY H, ROGL P . Ternary Metal Borides. Berlin Heidelberg:Springer. 1977: 413-438.
DOI URL PMID |
[6] |
TAN XIAOYAN, CHAI PING, THOMPSON COREY M , et al. Magnetocaloric effect in AlFe2B2: toward magnetic refrigerants from earth-abundant elements. Journal of the American Chemical Society, 2013,135(25):9553-9557.
DOI URL PMID |
[7] |
KOTA S, ZAPATA-SOLVAS E, LY A , et al. Synthesis and characterization of an alumina forming nanolaminated boride: MoAlB. Sci. Rep., 2016,6:26475.
DOI URL PMID |
[8] |
LI NING, BAI YUELEI, WANG SHUAI , et al. Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe2AlB2 bulk from elemental powders. Journal of the American Ceramic Society, 2017,100(10):4407-4411.
DOI URL |
[9] |
KADAS K, IUSAN D, HELLSVIK J , et al. AlM2B2(M=Cr, Mn, Fe, Co, Ni): a group of nanolaminated materials. Journal of Physics-Condensed Matter, 2017,29(15):155402.
DOI URL PMID |
[10] |
ZHOU YANCHUN, XIANG HUIMIN, DAI FUZHI , et al. Electrical conductive and damage-tolerant nanolaminated MAB phases Cr2AlB2, Cr3AlB4 and Cr4AlB6. Materials Research Letters, 2017,5(6):1-9.
DOI URL |
[11] |
DAI FUZHI, FENG ZHIHAI, ZHOU YANCHUN . Easily tiltable B Al B linear chain: the origin of unusual mechanical properties of nanolaminated MAB phases (CrB2)nCrAl. Journal of Alloys and Compounds, 2017,723:462-466.
DOI URL |
[12] | CHABAN N F, KUZ'MA YU B . Cheminform abstract: Ternaere systeme Cr-Al-B und Mn-Al-B. Chemischer Informationsdienst, 1974, DOI: 10.1002/chin.197404029. |
[13] |
ZHANG HAIMING, DAI FU-ZHI, XIANG HUIMIN , et al.Crystal structure of Cr4AlB4: a new MAB phase compound discovered in Cr-Al-B system. Journal of Materials Science & Technology, 2019,35(4):530-534.
DOI URL PMID |
[14] |
DAI FUZHI, ZHANG HAIMING, XIANG HUIMIN , et al. Theoretical investigation on the stability, mechanical and thermal properties of the newly discovered MAB phase Cr4AlB4. Journal of Materials Science & Technology, 2019, DOI: 10.1016/j.jmst.2019.01.017.
DOI URL PMID |
[15] |
LIU BIN, LIU YUCHEN, ZHU CHANGHUA , et al.Advances on strategies for searching for next generation thermal barrier coating materials. Journal of Materials Science & Technology, 2019,35(5):833-851.
DOI URL PMID |
[16] |
LIU YUCHEN, COOPER VALENTINO R, WANG BANGHUI , et al. Discovery of ABO3 perovskites as thermal barrier coatings through high-throughput first principles calculations. Materials Research Letters, 2019,7(4):145-151.
DOI URL |
[17] |
KRESSE G FURTHMÜLLER J . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter, 1996,54(16):11169-11186.
DOI URL PMID |
[18] |
PERDEW J P, BURKE K, ERNZERHOF M . Generalized gradient approximation made simple. Physical Review Letters, 1996,77(18):3865-3868.
DOI URL PMID |
[19] |
HAMMER B, HANSEN L B, NORSKOV J K . Improved adsorption energetics within density-functional theory using revised Perdew- Burke-Ernzerhof functionals. Phys. Rev. B, 1999,59(11):7413-7421.
DOI URL |
[20] |
PERDEW JOHN P, CHEVARY J A, VOSKO S H , et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B: Condens. Matter, 1992,46(11):6671-6687.
DOI URL PMID |
[21] |
DAHLQVIST M, ALLING B, ROSÉN J . Stability trends of MAX phases from first principles. Physical Review B, 2010,81(22):220102.
DOI URL PMID |
[22] |
BAI YUELEI, HE XIAODONG, SUN YUE , et al. Chemical bonding and elastic properties of Ti3AC2 phases (A=Si, Ge, and Sn): a first-principle study. Solid State Sciences, 2010,12(7):1220-1225.
DOI URL |
[23] |
SUN ZHIMEI, LI SA, AHUJA RAJEEV , et al. Calculated elastic properties of M2AlC (M=Ti, V, Cr, Nb and Ta). Solid State Communications, 2004,129(9):589-592.
DOI URL |
[24] |
ANDERSON ORSON L . A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids, 1963,24(7):909-917.
DOI URL |
[25] |
BAI YUELEI, QI XINXIN, DUFF ANDREW , et al. Density functional theory insights into ternary layered boride MoAlB. Acta Materialia, 2017,132:69-81.
DOI URL |
[26] |
BAI YUELEI, QI XINXIN, HE XIAODONG , et al. Phase stability and weak metallic bonding within ternary-layered borides CrAlB, Cr2AlB2, Cr3AlB4, and Cr4AlB6. Journal of the American Ceramic Society, 2019,102(6):3715-3727.
DOI URL |
[27] |
CHONG XIAOYU, JIANG YEHUA, ZHOU RONG , et al. Elastic properties and electronic structures of CrxBy as superhard compounds. Journal of Alloys and Compounds, 2014,610:684-694.
DOI URL |
[28] |
ONODERA A, HIRANO H, YUASA T , et al. Static compression of Ti3SiC2 to 61 GPa. Appl. Phys. Lett., 1999,74(25):3782-3784.
DOI URL |
[29] |
WANG JIEMIN, ZHOU YANCHUN . Ab initio investigation of the electronic structure and bonding properties of the layered ternary compound Ti3SiC2 at high pressure. Journal of Physics-Condensed Matter, 2003,15(12):1983-1991.
DOI URL |
[30] |
FRANCIS BIRCH . Finite elastic strain of cubic crystals. Physical Review, 1947,71(11):809-824.
URL PMID |
[31] | BARSOUM W MICHEL . Mechanical Properties: Ambient Temperature. MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Weinheim: Wiley, 2013. |
[32] |
BAI YUELEI, DUFF ANDREW, JAYASEELAN DANIEL DONI , et al. DFT predictions of crystal structure, electronic structure, compressibility, and elastic properties of Hf-Al-C carbides. Journal of the American Ceramic Society, 2016,99(10):3449-3457.
DOI URL |
[33] |
BAI YUELEI, HE XIAODONG, WANG RONGGUO , et al. An ab initio study on compressibility of Al-containing MAX-phase carbides. Journal of Applied Physics, 2013,114(17):173709.
DOI URL |
[34] |
WANG CHANGYING, HAN HAN, ZHAO YUANYUAN , et al. Elastic, mechanical, electronic, and defective properties of Zr-Al-C nanolaminates from first principles. Journal of the American Ceramic Society, 2018,101(2):756-772.
DOI URL |
[35] | PUGH S F . Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine, 2009,45(367):823-843. |
[1] | 安文然, 黄晶琪, 卢祥荣, 蒋佳宁, 邓龙辉, 曹学强. 热处理温度对LaMgAl11O19涂层热/力学性能的影响[J]. 无机材料学报, 2022, 37(9): 925-932. |
[2] | 张叶, 曾宇平. 自蔓延高温合成氮化硅多孔陶瓷的研究进展[J]. 无机材料学报, 2022, 37(8): 853-864. |
[3] | 夏乾, 孙是昊, 赵义亮, 张翠萍, 茹红强, 王伟, 岳新艳. 碳化硼颗粒级配对硅反应结合碳化硼复合材料结构与性能的影响[J]. 无机材料学报, 2022, 37(6): 636-642. |
[4] | 洪督, 牛亚然, 李红, 钟鑫, 郑学斌. 等离子喷涂TiC-Graphite复合涂层摩擦磨损性能[J]. 无机材料学报, 2022, 37(6): 643-650. |
[5] | 徐谱昊, 张相召, 刘桂武, 张明芬, 桂新易, 乔冠军. Al-Ti合金钎焊SiC陶瓷接头界面微观结构与力学性能[J]. 无机材料学报, 2022, 37(6): 683-690. |
[6] | 丁健翔, 张凯歌, 柳东明, 郑伟, 张培根, 孙正明. Ti3AlC2陶瓷及其衍生物Ti3C2Tx增强的Ag基电接触材料[J]. 无机材料学报, 2022, 37(5): 567-573. |
[7] | 王鹏, 靳遵龙, 陈宁光, 刘勇豪. Mo掺杂α-MnO2电催化析氧反应的理论研究[J]. 无机材料学报, 2022, 37(5): 541-546. |
[8] | 蔚海浪, 曹学强, 邓龙辉, 蒋佳宁. LaMeAl11O19/YSZ热障涂层热力学性能和热循环寿命[J]. 无机材料学报, 2022, 37(12): 1259-1266. |
[9] | 孙扬善, 杨治华, 蔡德龙, 张正义, 柳琪, 房树清, 冯良, 石丽芬, 王友乐, 贾德昌. 粉末烧结法制备α-堇青石基玻璃陶瓷的析晶动力学和性能[J]. 无机材料学报, 2022, 37(12): 1351-1357. |
[10] | 吴西士, 朱云洲, 黄庆, 黄政仁. 树脂基多孔碳孔结构对Cf/SiC复合材料连接性能的影响[J]. 无机材料学报, 2022, 37(12): 1275-1280. |
[11] | 李友兵, 秦彦卿, 陈科, 陈露, 张霄, 丁浩明, 李勉, 张一鸣, 都时禹, 柴之芳, 黄庆. 熔盐法合成纳米层状Sc2SnC MAX相[J]. 无机材料学报, 2021, 36(7): 773-778. |
[12] | 孙鲁超, 周翠, 杜铁锋, 吴贞, 雷一明, 李家麟, 苏海军, 王京阳. 光悬浮区熔定向凝固Al2O3/Er3Al5O12和Al2O3/Yb3Al5O12共晶陶瓷的制备与性能研究[J]. 无机材料学报, 2021, 36(6): 652-658. |
[13] | 吕莎莎, 祖宇飞, 陈国清, 赵伯俊, 付雪松, 周文龙. 陶瓷颗粒增强Cr0.5MoNbWTi难熔高熵合金复合材料的制备及其力学性能[J]. 无机材料学报, 2021, 36(4): 386-392. |
[14] | 王皓轩, 刘巧沐, 王一光. 高熵过渡金属碳化物陶瓷的研究进展[J]. 无机材料学报, 2021, 36(4): 355-364. |
[15] | 金敏, 白旭东, 赵素, 张如林, 陈玉奇, 周丽娜. 坩埚下降法生长SnSe单晶及其力学性能研究[J]. 无机材料学报, 2021, 36(3): 313-318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||