无机材料学报 ›› 2019, Vol. 34 ›› Issue (12): 1301-1308.DOI: 10.15541/jim20190076 CSTR: 32189.14.10.15541/jim20190076
所属专题: 离子电池材料
收稿日期:
2019-02-22
修回日期:
2019-04-08
出版日期:
2019-12-20
网络出版日期:
2019-05-29
作者简介:
王武练(1991-), 男, 硕士研究生. E-mail: wangwulian@nimte.ac.cn
基金资助:
WANG Wu-Lian1,2,ZHANG Jun2,WANG Qiu-Shi2,CHEN Liang2,LIU Zhao-Ping2()
Received:
2019-02-22
Revised:
2019-04-08
Published:
2019-12-20
Online:
2019-05-29
Supported by:
摘要:
采用水热法合成高质量的Fe4[Fe(CN)6]3(HQ-FeHCF)纳米材料, 并对材料进行X射线衍射(XRD), 扫描电子显微镜(SEM), 透射电子显微镜(TEM)和热重分析测试(TGA)等表征。结果表明:Fe4[Fe(CN)6]3呈规则立方体, 颗粒大小约500 nm, 属面心立方结构。Fe4[Fe(CN)6]3在NaClO4-H2O-聚乙二醇电解液中1C、2C、5C、10C、20C、30C和40C的容量分别为124、118、105、94、83、74和64 mAh·g -1, 表现出优异的倍率性能; 以5C倍率循环500次, 容量保持率接近100%, 表现出极佳的循环稳定性。以Fe4[Fe(CN)6]3和磷酸钛钠分别为正负极的全电池工作电压高达1.9 V, 能量密度可达126 Wh·kg -1; 以5C倍率恒流充放电测试140次后全电池容量保持率为92%, 且库伦效率始终接近100%。
中图分类号:
王武练, 张军, 王秋实, 陈亮, 刘兆平. 高质量水系钠离子电池正极Fe4[Fe(CN)6]3的合成及其电化学性能[J]. 无机材料学报, 2019, 34(12): 1301-1308.
WANG Wu-Lian, ZHANG Jun, WANG Qiu-Shi, CHEN Liang, LIU Zhao-Ping. High-quality Fe4[Fe(CN)6]3 Nanocubes: Synthesis and Electrochemical Performance as Cathode Material for Aqueous Sodium-ion Battery[J]. Journal of Inorganic Materials, 2019, 34(12): 1301-1308.
图1 HQ-FeHCF和LQ-FeHCF的(a)XRD图谱和(b)TG曲线, (a)中插图为HQ-FeHCF晶胞结构示意图
Fig. 1 (a) XRD patterns and (b)TG curves of HQ-FeHCF and LQ-FeHCF with inset in (a) showing crystal structure of HQ-FeHCF
Atom | Wyckoff position | x | y | z | Site occupancy |
---|---|---|---|---|---|
Fe1 | 4a | 0.0000 | 0 | 0 | 0.9790 |
Fe2 | 4b | 0.5000 | 0 | 0 | 0.8901 |
C | 24e | 0.2024 | 0 | 0 | 0.9771 |
N | 24e | 0.2988 | 0 | 0 | 0.9771 |
表1 HQ-FeHCF的XRD精修数据
Table 1 Fractional coordinates of HQ-FeHCF determined from Rietveld method
Atom | Wyckoff position | x | y | z | Site occupancy |
---|---|---|---|---|---|
Fe1 | 4a | 0.0000 | 0 | 0 | 0.9790 |
Fe2 | 4b | 0.5000 | 0 | 0 | 0.8901 |
C | 24e | 0.2024 | 0 | 0 | 0.9771 |
N | 24e | 0.2988 | 0 | 0 | 0.9771 |
Atom | Wyckoff position | x | y | z | Site occupancy |
---|---|---|---|---|---|
Fe1 | 4a | 0.0000 | 0 | 0 | 0.8458 |
Fe2 | 4b | 0.5000 | 0 | 0 | 0.6262 |
C | 24e | 0.2260 | 0 | 0 | 0.8420 |
N | 24e | 0.3275 | 0 | 0 | 0.8420 |
表2 LQ-FeHCF的XRD精修数据
Table 2 Fractional coordinates of LQ-FeHCF determined from Rietveld method
Atom | Wyckoff position | x | y | z | Site occupancy |
---|---|---|---|---|---|
Fe1 | 4a | 0.0000 | 0 | 0 | 0.8458 |
Fe2 | 4b | 0.5000 | 0 | 0 | 0.6262 |
C | 24e | 0.2260 | 0 | 0 | 0.8420 |
N | 24e | 0.3275 | 0 | 0 | 0.8420 |
图4 (a)HQ-FeHCF和LQ-FeHCF在Na-H2O-PEG电解液中以1 mV·s-1的扫速测得的循环伏安曲线; (b)HQ-FeHCF和LQ-FeHCF在1C倍率下的充放电曲线; (c)HQ-FeHCF和LQ-FeHCF的倍率性能; (d)HQ-FeHCF和LQ-FeHCF的循环性能
Fig. 4 (a) Cyclic voltammogram (CV) curves of HQ-FeHCF and LQ-FeHCF at the sweep rate of 1 mV·s-1 in the electrolyte of Na-H2O-PEG; (b) Charge and discharge curves of HQ-FeHCF and LQ-FeHCF at 1C; (c) Rate performance of HQ-FeHCF and LQ-FeHCF; (d) Cycling performance of HQ-FeHCF and LQ-FeHCF
图8 (a)HQ-FeHCF和NaTi2(PO4)在Na-H2O-PEG电解液中以1 mV·s-1的扫速测得的循环伏安曲线; (b)1C倍率下正极、负极和全电池的衡流充放电曲线;全电池的(c)倍率性能和(d)循环性能
Fig. 8 (a) Cyclic voltammogram (CV) curves of HQ-FeHCF and NaTi2(PO4) at the sweep rate of 1 mV·s-1 in the electrolyte of Na-H2O-PEG; (b) Galvanostatic charge-discharge profiles at 1C for full cell, cathode, and anodein the electrolyte of Na-H2O-PEG; (c) Rate performance and (d) cycling performance of full cell
Cathode | Anode | Energy density/ (Wh·kg-1) | Ref. |
---|---|---|---|
Na0.44MnO2 | NaTi2(PO4)3 | 33 | [39] |
Na2Ni[Fe(CN)6] | NaTi2(PO4)3 | 43 | [13] |
Na2Cu[Fe(CN)6] | NaTi2(PO4)3 | 48 | [40] |
NaMnO2 | NaTi2(PO4)3 | 30 | [12] |
K0.27MnO2 | NaTi2(PO4)3 | 55 | [41] |
NaFePO4 | NaTi2(PO4)3 | 61 | [42] |
Na2VTi(PO4)3 | NaTi2(PO4)3 | 68 | [43] |
Na3MnTi(PO4)3 | NaTi2(PO4)3 | 82 | [44] |
Na0.66Mn0.66Ti0.34O2 | NaTi2(PO4)3 | 76 | [45] |
Na2Ni0.4Co0.6[Fe(CN)6] | NaTi2(PO4)3 | 121 | [46] |
Fe4[Fe(CN)6]3 | NaTi2(PO4)3 | 126 | This work |
表3 不同水系钠离子全电池的能量密度对比
Table 3 Energy density of different aqueous sodium-ion batteries
Cathode | Anode | Energy density/ (Wh·kg-1) | Ref. |
---|---|---|---|
Na0.44MnO2 | NaTi2(PO4)3 | 33 | [39] |
Na2Ni[Fe(CN)6] | NaTi2(PO4)3 | 43 | [13] |
Na2Cu[Fe(CN)6] | NaTi2(PO4)3 | 48 | [40] |
NaMnO2 | NaTi2(PO4)3 | 30 | [12] |
K0.27MnO2 | NaTi2(PO4)3 | 55 | [41] |
NaFePO4 | NaTi2(PO4)3 | 61 | [42] |
Na2VTi(PO4)3 | NaTi2(PO4)3 | 68 | [43] |
Na3MnTi(PO4)3 | NaTi2(PO4)3 | 82 | [44] |
Na0.66Mn0.66Ti0.34O2 | NaTi2(PO4)3 | 76 | [45] |
Na2Ni0.4Co0.6[Fe(CN)6] | NaTi2(PO4)3 | 121 | [46] |
Fe4[Fe(CN)6]3 | NaTi2(PO4)3 | 126 | This work |
[1] | CHEN L, SHAO H Z, ZHOU X F , et al. Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics. Nature Communications, 2016,7:11982. |
[2] | ZHANG L Y, CHEN L, ZHOU X F , et al. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Advanced Energy Materials, 2015,5(2):1400930. |
[3] | ZU C X, LI H . Thermodynamic analysis on energy densities of batteries. Energy & Environmental Science, 2011,4(8):2614-2624. |
[4] | SUO L M, HU Y S, LI H , et al. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nature Communications, 2013,4:1481. |
[5] | SUO L M, BORODIN O, GAO T , et al. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, 2015,350(6263):938-943. |
[6] | YAN J, WANG J, LIU H , et al. Rechargeable hybrid aqueous batteries. Journal of Power Sources, 2012,216:222-226. |
[7] | WANG Y G, YI J, XIA Y Y . Recent progress in aqueous lithium- ion batteries. Advanced Energy Materials, 2012,2(7):830-840. |
[8] | LUO J Y, CUI W J, HE P , et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nature Chemistry, 2010,2(9):760-765. |
[9] | LUO J Y, XIA Y Y . Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Advanced Functional Materials, 2007,17(18):3877-3884. |
[10] | WANG Y G, LOU J Y, WU W , et al. Hybrid aqueous energy storage cells using activated carbon and lithium-ion intercalated compounds III capacity fading mechanism of LiCo1/3Ni1/3Mn1/3O2 at different pH electrolyte solutions. Journal of the Electrochemical Society, 2007,154(3):A228-A234. |
[11] | KIM D J, JUNG Y H, BHARATHI K K , et al. An aqueous sodium ion hybrid battery incorporating an organic compound and a prussian blue derivative. Advanced Energy Materials, 2014,4(12):1400133. |
[12] | HOU Z G, LI X N, LIANG J W , et al. An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage. Journal of Materials Chemistry A, 2015,3(4):1400-1404. |
[13] | WU X Y, CAO Y L, AI X P , et al. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochemistry Communications, 2013,31:145-148. |
[14] | SUN X Q, DUFFORT V, MEHDI B L , et al. Investigation of the mechanism of Mg insertion in birnessite in nonaqueous and aqueous rechargeable Mg-ion batteries. Chemistry of Materials, 2016,28(2):534-542. |
[15] | CHENG Y W, LUO L L, ZHONG L , et al. Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries. ACS Applied Materials & Interfaces, 2016,8(22):13673-13677. |
[16] | TROCOLI R, LA MANTIA F . An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem, 2015,8(3):481-485. |
[17] | XU C J, LI B H, DU H D , et al. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angewandte Chemie-International Edition, 2012,51(4):933-935. |
[18] | WANG X W, WANG F X, WANG L Y , et al. An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Advanced Materials, 2016,28(24):4904-4911. |
[19] | LIU Z, PULLETIKURTHI G, ENDRES F . A prussian blue/zinc secondary battery with a bio-ionic liquid-water mixture as electrolyte. ACS Applied Materials & Interfaces, 2016,8(19):12158-12164. |
[20] | ZHAO J W, LI Y Q, PENG X , et al. High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of "water- in-salt" electrolyte. Electrochemistry Communications, 2016,69:6-10. |
[21] | LU K, SONG B, ZHANG J T , et al. A rechargeable Na-Zn hybrid aqueous battery fabricated with nickel hexacyanoferrate and nanostructured zinc. Journal of Power Sources, 2016,321:257-263. |
[22] | HU P, WANG T S, ZHAO J W , et al. Ultrafast alkaline Ni/Zn battery based on Ni-foam-supported Ni3S2 nanosheets. ACS Applied Materials & Interfaces, 2015,7(48):26396-26399. |
[23] | KE L L, DONG J, LIN B , et al. A NaV3(PO4)3@C hierarchical nanofiber in high alignment: exploring a novel high-performance anode for aqueous rechargeable sodium batteries. Nanoscale, 2017,9(12):4183-4190. |
[24] | WU X Y, SUN M Y, GUO S M , et al. Vacancy-free prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. ChemNanoMat, 2015,1(3):188-193. |
[25] | YUAN S, ZHU Y H, LI W , et al. Surfactant-free aqueous synthesis of pure single-crystalline SnSe nanosheet clusters as anode for high energy-and power-density sodium-ion batteries. Advanced Materials, 2017,29(4):6. |
[26] | JIANG P, SHAO H Z, CHEN L , et al. Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries. Journal of Materials Chemistry A, 2017,5(32):16740-16747. |
[27] | LU Y H, WANG L, CHENG J G , et al. Prussian blue: a new framework of electrode materials for sodium batteries. Chemical Communications, 2012,48(52):6544-6546. |
[28] | YOU Y, YU X Q, YIN Y X , et al. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Research, 2015,8(1):117-128. |
[29] | WESSELLS C D, HUGGINS R A, CUI Y . Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nature Communications, 2011,2:550. |
[30] | WANG L, LU Y H, LIU J , et al. A superior low-cost cathode for a Na-ion battery. Angewandte Chemie-International Edition, 2013,52(7):1964-1967. |
[31] | YOU Y, WU X L, YIN Y X , et al. High-quality prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy & Environmental Science, 2014,7(5):1643-1647. |
[32] | YUE Y F, BINDER A J, GUO B K , et al. Mesoporous prussian blue analogues: template-free synthesis and sodium-ion battery applications. Angewandte Chemie-International Edition, 2014,53(12):3134-3137. |
[33] | WESSELLS C D, PEDDADA S V, HUGGINS R A , et al. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Letters, 2011,11(12):5421-5425. |
[34] | ZHANG L, WU H B, MADHAVI S , et al. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. Journal of the American Chemical Society, 2012,134(42):17388-17391. |
[35] | WU X Y, LUO Y, SUN M Y , et al. Low-defect prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries. Nano Energy, 2015,13:117-123. |
[36] | WU X Y, WU C H, WEI C X , et al. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Applied Materials & Interfaces, 2016,8(8):5393-5399. |
[37] | PADIGI P, THIEBES J, SWAN M , et al. Prussian green: a high rate capacity cathode for potassium ion batteries. Electrochimica Acta, 2015,166:32-39. |
[38] | YANG D Z, XU J, LIAO X Z , et al. Prussian blue without coordinated water as a superior cathode for sodium-ion batteries. Chemical Communications, 2015,51(38):8181-8184. |
[39] | LI Z, YOUNG D, XIANG K , et al. Towards high power high energy aqueous sodium-ion batteries: the NaTi2(PO4)3/Na0.44MnO2 system. Advanced Energy Materials, 2013,3(3):290-294. |
[40] | WU X Y, SUN M Y, SHEN Y F , et al. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem, 2014,7(2):407-411. |
[41] | LIU Y, QIAO Y, ZHANG W X , et al. High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy, 2014,5:97-104. |
[42] | FERNANDEZ-ROPERO A J, SAUREL D, ACEBEDO B , et al. Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries. Journal of Power Sources, 2015,291:40-45. |
[43] | WANG H B, ZHANG T R, CHEN C , et al. High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3. Nano Research, 2018,11(1):490-498. |
[44] | GAO H C, GOODENOUGH J B . An aqueous symmetric sodium- ion battery with NASICON-structured Na3MnTi(PO4)3. Angewandte Chemie-International Edition, 2016,55(41):12768-12772. |
[45] | WANG Y S, MU L Q, LIU J , et al. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium- ion batteries. Advanced Energy Materials, 2015,5(22):8. |
[46] | LI W F, ZHANG F, XIANG X D , et al. Electrochemical properties and redox mechanism of Na2Ni0.4Co0.6Fe(CN)6 nanocrystallites as high-capacity cathode for aqueous sodium-ion batteries. Journal of Physical Chemistry C, 2017,121(50):27805-27812. |
[1] | 孔国强, 冷明哲, 周战荣, 夏池, 沈晓芳. Sb掺杂O3型Na0.9Ni0.5Mn0.3Ti0.2O2钠离子电池正极材料[J]. 无机材料学报, 2023, 38(6): 656-662. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 李一村, 刘雪冬, 郝晓斌, 代兵, 吕继磊, 朱嘉琦. 等离子体聚集装置下的高能量密度单晶金刚石快速生长研究[J]. 无机材料学报, 2023, 38(3): 303-309. |
[4] | 李涛, 曹鹏飞, 胡力涛, 夏勇, 陈一, 刘跃军, 孙翱魁. NH4+扩层MoS2的制备及其储锌性能研究[J]. 无机材料学报, 2023, 38(1): 79-86. |
[5] | 王洋, 范广新, 刘培, 尹金佩, 刘宝忠, 朱林剑, 罗成果. 钾离子掺杂提高锂离子电池正极锰酸锂性能的微观机制[J]. 无机材料学报, 2022, 37(9): 1023-1029. |
[6] | 李文博, 黄民松, 李月明, 李驰麟. 双盐镁电池CoS2正极材料的电化学性能研究[J]. 无机材料学报, 2022, 37(2): 173-181. |
[7] | 柯剑煌, 谢凯, 韩喻, 孙巍巍, 罗世强, 刘锦锋. 基于不同共溶剂体系对于高电压正极材料LiCoPO4的形貌控制[J]. 无机材料学报, 2019, 34(6): 618-624. |
[8] | 李勇, 何玮鑫, 郑芯月, 于胜兰, 李海同, 黎弘毅, 张蓉, 王雨. 水系钠离子电池普鲁士蓝正极材料的制备与电化学性能研究[J]. 无机材料学报, 2019, 34(4): 365-372. |
[9] | 王家虎, 王文馨, 杜鹏, 胡芳东, 姜晓蕾, 杨剑. Na3V2(PO4)2F3@V2O5-x复合材料的制备及储钠性能研究[J]. 无机材料学报, 2019, 34(10): 1097-1102. |
[10] | 赛喜雅勒图, 王雪莹, 顾庆文, 夏永高, 刘兆平, 何杰. 非化学计量比调控高电压尖晶石正极材料电化学性能研究[J]. 无机材料学报, 2018, 33(9): 993-1000. |
[11] | 李玲, 李运姣, 徐斌, 卢伟胜, 苏千叶, 陈永祥, 李林. 湿法合成LiNixCoyMn1-x-yO2的E-pH图绘制及其电性能[J]. 无机材料学报, 2018, 33(3): 320-324. |
[12] | 王璐, 孔文杰, 罗行, 周学凡, 周科朝, 张斗. BaTiO3纳米线的制备及其复合物介电和储能性能研究[J]. 无机材料学报, 2018, 33(10): 1059-1064. |
[13] | 杨坤坤, 杨少华, 赵 平, 赵彦龙. FeS2/RGO纳米复合材料的制备及热电池放电性能[J]. 无机材料学报, 2017, 32(7): 691-698. |
[14] | 李 威, 张远杰, 王选朋, 牛朝江, 安琴友, 麦立强. 锂离子电池正极材料LiMn0.6Fe0.4PO4/C的制备及电化学性能[J]. 无机材料学报, 2017, 32(5): 476-482. |
[15] | 陈丽能, 晏梦雨, 梅志文, 麦立强. 水系锌离子电池的研究进展[J]. 无机材料学报, 2017, 32(3): 225-234. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1370
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 778
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||