| [1] | JACKSON P, HARISKOS D, WUE RZ , et al. Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7%. Physica Status Solidi (RRL)-Rapid Research Letters, 2015,9(1):28-31. | 
																													
																						| [2] | KATAGIRI H, SAITOH K, WASHIO T , et al. Development of thin film solar cell based on Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 2011,65(1):141-148. | 
																													
																						| [3] | SHOCKLEY W, QUEISSER H J . Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 2004,32(3):510-519. | 
																													
																						| [4] | KATAGIRI H, JIMBO K, MAW W S , et al. Development of CZTS-based thin film solar cells. Thin Solid Films, 2009,517(7):2455-2460. DOI    
																																					URL
 | 
																													
																						| [5] | LU FANG-YANG, HUANG JIA-LIANG SUN KAI-WEI  et al. Beyond 8% ultrathin kesterite Cu2ZnSnS4 solar cells by interface reaction route controlling and self-organized nanopattern at the back contact. NPG Asia Materials, 2017, 9(7): e401-1-8. | 
																													
																						| [6] | XU XIN, WANG SHU-RONG, MA XUN , et al. Optimization of sulfurization time for properties of Cu2ZnSnS4 films and cells by sputtering method. Journal of Materials Science: Materials in Electronics, 2018,29(22):19137-19146. DOI    
																																					URL
 | 
																													
																						| [7] | WANG K, GUNAWAN O, TODOROV T , et al. Thermally evaporated Cu2ZnSnS4 solar cells. Applied Physics Letters, 2010,97(14):2455-1155. DOI    
																																					URL
 | 
																													
																						| [8] | MORIYA K, TANAKA K, UCHIKI H . Fabrication of Cu2ZnSnS4 thin-film solar cell prepared by pulsed laser deposition. Japanese Journal of Applied Physics, 2014,46(9A):5780-5781. | 
																													
																						| [9] | ChAUDHARI J J, JOSHI U S . Effects of complexing agent on earth-abundant environmentally friendly Cu2ZnSnS4 thin film solar cells prepared by Sol-Gel deposition. Applied Physics A, 2018,124(7):465-473. DOI    
																																					URL
 | 
																													
																						| [10] | TAO JIA-HUA, LIU JUN-FENG, CHEN LEI-LEI , et al. 7.1% efficienct co-electroplated Cu2ZnSnS4 thin film solar cells with sputtered CdS buffer layers. Green Chemistry, 2016,18(2):550-587. | 
																													
																						| [11] | ZENG X, TAI K F, ZHANH T L , et al. Cu2ZnSn(S,Se)4 kesterite solar with 5.1% efficiency using spray pyrolysis of aqueous precursor solution followed by selenization. Solar Energy Materials & Solar Cells, 2014,124(5):55-60. | 
																													
																						| [12] | ÖZDAL T, KAVAK H . Determination of crystallization threshold temperature for Sol-Gel spin coated Cu2ZnSnS4 thin films. Ceramics International, 2018,44(15):18928-1893. | 
																													
																						| [13] | FUKANO T, TAJIMA S, ITO T . Enhancement of conversion efficiency of Cu2ZnSnS4 thin film solar cells by improvement of sulfurization conditions. Applied Physics Express, 2013, 6(6): 062301-1-3. DOI    
																																					URL
 | 
																													
																						| [14] | SHIN B, GUNAWAN O, ZHU Y , et al. Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Progress in Photovoltaics: Research and Applications, 2013,21(1):72-76. | 
																													
																						| [15] | YAN HANG, HUANG JIA-LIANG, LIU FANG-YANG , et al. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nature Energy, 2018,3(9):764-772. | 
																													
																						| [16] | YANG MIN, WANG SHURONG, JIANG ZHI , et al. Cu2ZnSnS4 thin film solar cells prepared by sulfurization of sputtered precursors. Bulletin of the Chinese Ceramic Society, 2015,34(Supplement):222-226. | 
																													
																						| [17] | LI ZHI-SHAN, WANG SHU-RONG, JIANG ZHI , et al. Cu2ZnSnS4 thin films prepared by magnetron. Bulletin of the Chinese Ceramic Society, 2015,34(Supplement):127-131. | 
																													
																						| [18] | LISCO F, KAMINSKI P M, ABBAS A , et al. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering. Thin Solid Films, 2015,574(1):43-51. DOI    
																																					URL
 | 
																													
																						| [19] | CHEN S, WANG L W, WALSH A , et al. Abundance of CuZn+SnZn and 2CuZn+SnZn defect clusters in kesterite solar cells. Applied Physics Letters, 2012, 101(22): 223901-1-4. | 
																													
																						| [20] | ZHAO WAN-GEN, WANG GANG, TIAN QING-WEN , et al. Fabrication of Cu2ZnSn(S,Se)4 solar cells via an ethanol-based Sol-Gel route using SnS2 as Sn source. ACS Applied Materials &Interfaces, 2014,6(15):12650-12655. DOI    
																																					URL    
																																					PMID
 | 
																													
																						| [21] | MOUSEL M, SCHWARZ T, DJEMOUR R , et al. Cu-rich precursors improve kesterite solar cells. Advanced Energy Materials, 2014, 4(2): 1300543-1-6. DOI    
																																					URL
 | 
																													
																						| [22] | FERNANDES P A, SALOME P M P, CUNHA A F D . Study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. Journal of Physics D Applied Physics, 2010, 43(21): 215403-1-11. DOI    
																																					URL
 |