| [1] | LI SHI-ZHI, SHI Yu-LONG, PENG HONG-RUI. Ti-Si-N films prepared by plasma-enhanced chemical vapor deposition. Plasma Chemistry and Plasma Processing, 1992, 12(3): 287-297. | 
																													
																						| [2] | XU JIAN-HUA, MA DA-YAN, MA SHENG-LI, et al. Thermal stability of Ti-Si-N super hard nanocomposite coatings. Rare Metal Materials and Engineering, 2005, 34(11): 1778-1781. | 
																													
																						| [3] | STAN VEPREK, MARITZA G J VEPREK-HEIJMAN, PAVLA KARVANKOVA, et al. Different approaches to superhard coatings and nanocomposites. Thin Solid Films, 2005, 476(1): 1-29. | 
																													
																						| [4] | STAN VEPREK, MARITZA J G VEPREK-HEIJMAN. Industrial applications of superhard nanocomposite coatings. Surface and Coatings Technology, 2008, 202(21):5063-5073. | 
																													
																						| [5] | NIEDERHOFER A, NESLADEK P, MANNLING H D, et al. Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1-yAlySix)N superhard nanocomposite coatings reaching the hardness of diamond. Surface and Coatings Technology, 1999, 120-121:173-178. | 
																													
																						| [6] | LI WEI, LIU PING, ZHAO YONG-SHENG, et al. New understanding of hardening mechanism of TiN/SiNx-based nanocomposite films. Nanoscale Research Letters, 2013, 8: 427-433. | 
																													
																						| [7] | VEPREK S, NIEDERHOFER A, MOTO K, et al. Composition nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4 and nc-TiSi2 nanocomposites with H-v=80 to≤105 GPa. Surface and Coatings Technology, 2000, 133-134: 152-159. | 
																													
																						| [8] | KONG MING, ZHAO WEN-JI, WU XIAO-YAN, et al. Microstructure and mechanical properties of TiN/Si3N4 nanocomposites. Journal of Inorgnic Materials, 2007, 22(3): 539-544. | 
																													
																						| [9] | OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992, 7(6):1564-1583. | 
																													
																						| [10] | KIM C, QADRI S B, SCANLON M R, et al. Low-dimension structural properties and microindentation studies of ion-beam-sputtered multilayers of Ag/Al films. Thin Solid Films 1994, 240(1/2): 52-55. | 
																													
																						| [11] | KIM I W, LI QUAN, MARKS L D, et al. Critical thickness for transformation of8 epitaxially stabilized cubic AlN in superlattices. Applied Physics Letters, 2001, 78(7): 892-894. | 
																													
																						| [12] | MEI F H, SHAO N, DAI J W, et al. Coherent growth and superhardness effect of AlN/TiN nanomultilayers. Materials Letters, 2004, 58(27/28): 3477-3480. | 
																													
																						| [13] | YUE JIAN-LING, LI GE-YANG. Microstructure and mechanical proerties of TiAlN/Si3N4 nano-multilayers synthesized by reactive magnetron sputtering. Journal of Alloys and Compounds, 2009, 481:710-713. | 
																													
																						| [14] | LAO JI-JUN, SHAO NAN, MEI FANG-HUA, et al. Mutual promotion effect of crystal growth in TiN/SiC nanomultilayers. Applied Physics Letters, 2005, 86(1): 011902-1-3. | 
																													
																						| [15] | LAI QIAN-XI, YU XIAO-JIANG, DAI JIA-WEI, et al. Alternating stress field and superhardness effect in TiN/NbN nano- multilayers. Journal of Vacuum Science and Technology, 2002, 22(4): 313-316. | 
																													
																						| [16] | KOEHLER J S. Attempt to design a stronge solid. Physical Review B, 1970, 2(2): 547-551. | 
																													
																						| [17] | KATO M, MORI T, SCHWARTZ L H. Hardening by spinodal modulated structure. Acta Metallurgica Sinica, 1980, 28(3): 285-290. |