[1] |
KRAYTSBERG A, HIGHEREIN-ELI Y, STRONGER BETTER. A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater., 2012, 10(2): 922-939.
|
[2] |
CLARK J M, NISHIMURA S, YAMADA A, et al. High-voltage pyrophosphate cathode: insights into local structure and lithium- diffusion pathways. Angew. Chem., 2012, 51(5): 13149-13153.
|
[3] |
ETACHERI V, MAROM R, ELAZARI R, et al. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci., 2011, 9(4): 3243-3262.
|
[4] |
XIAO J, CHEN X L, SUSHKO P V, et al. High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv. Mater., 2012, 24(16): 2109-2116.
|
[5] |
SONG J, SHIN D W, LU Y, et al. Role of oxygen vacancies on the performance of Li[Ni0.5-xMn1.5+x]O4(x= 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem. Mater., 2012, 24(15): 3101-3109.
|
[6] |
CABANA J, CASAS-CABANAS M, OMENYA F O, et al. Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem. Mater., 2012, 24(15): 2952-2964.
|
[7] |
NIE X, ZHONG B H, CHEN M Z, et al. Synthesis of LiCr0.2Ni0.4Mn1.4O4 with superior electrochemical performance via a two-step thermo polymerization technique. Electrochim. Acta, 2013, 97(1): 184-191.
|
[8] |
SUN Q, LI X H, WANG Z X, et al. Synthesis and electrochemical performance of 5 V spinel LiNi0.5Mn1.5O4 prepared by solid-state reaction. Trans. Nonferrous Met. Soc. China, 2009, 19(1): 176-181.
|
[9] |
ZHU Z, YAN H, ZHANG D, et al. Preparation of 4.7 V cathode material LiNi0.5Mn1.5O4 by an oxalic acid-pretreated solid-state method for lithium-ion secondary battery. J. Power Sources, 2013, 224(1): 13-19.
|
[10] |
ZHANG X L, CHENG F Y, ZHANG K, et al. Facile polymer-assisted synthesis of LiNi0.5Mn1.5O4 with a hierarchical micro-nano structure and high rate capability. RSC Adv., 2012, 13(2): 5669-5675.
|
[11] |
FENG J J, HUANG Z P, GUO C, et al. An organic coprecipitation route to synthesize high voltage LiNi0.5Mn1.5O4. ACS Appl. Mater. Interfaces, 2013, 5(20): 10227-10232.
|
[12] |
ZHAO SHI-XI, LI YING-DA, DING HAO, et al. Structure and electrochemical performance of LiFePO4/C cathode materials coated with nano Al2O3 for lithium-ion battery. Journal of Inorganic Materials, 2013, 28(11): 136-140.
|
[13] |
PARK S H, SUN Y K. Synthesis and electrochemical properties of 5V spinel LiNi0.5Mn1.5O4 cathode materials prepared by ultrasonic spray pyrolysis method. Electrochim. Acta, 2004, 50(2): 431-434.
|
[14] |
KIM J H, MYUNG S T, SUN Y K. Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 V class cathode material of Li-ion secondary battery. Electrochim. Acta, 2004, 49(2): 219-227.
|
[15] |
ZHANG WEN-HUA, HE WEI, PEI FENG, et al. Improved electrochemical properties of Al3+-doped 0.5Li2MnO3- 0.5LiCo1/3Ni1/3Mn1/3O2 cathode for lithium ion batteries. Journal of Inorganic Materials, 2013, 28(11): 114-117.
|
[16] |
SUN Y C, WANG Z X, HUANG X J, et al. Synthesis and electrochemical performance of spinel LiMn2-x-yNixCryO4 as 5 V cathode materials for lithium ion batteries. J. Power Sources, 2004, 132(1): 161-165.
|
[17] |
SUSHKO P V, ROSSO K M, ZHANG J G, et al. Oxygen vacancies and ordering of d-levels control voltage suppression in oxide cathodes: the case of spinel LiNi0.5Mn1.5O4-δ. Adv. Funct. Mater., 2013(1): 205-210.
|
[18] |
WANG L, LI H, HUANG X, et al. A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4”. Solid State Ionics, 2011, 193(1): 32-38.
|
[19] |
ZHANG X L, CHENG F Y, YANG J G, et al. LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett., 2013, 13(6): 2822-2825.
|
[20] |
AKLALOUCH M, ROJAS R M, ROJO J M, et al. The role of particle size on the electrochemical properties at 25 and at 55℃ of the LiCr0.2Ni0.4Mn1.4O4 spinel as 5 V-cathode materials for lithium-ion batteries. Electrochim. Acta, 2009, 54(28): 7542-7550.
|
[21] |
AURBACH D, MARKOVSKY B, TALYOSSEF Y, et al. Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5 V cells. J. Power Sources, 2006, 162(2): 780-789.
|
[22] |
SHA O, TANG Z Y, WANG S L, et al. The multi-substituted LiNi0.475Al0.01Cr0.04Mn1.475O3.95F0.05 cathode material with excellent rate capability and cycle life. Electrochim. Acta, 2012, 77(5): 250-255.
|
[23] |
AKLALOUCH M, AMARILLA J M, ROJAS R M, et al. Sub-micrometric LiCr0.2Ni0.4Mn1.4O4 spinel as 5 V-cathode material exhibiting huge rate capability at 25 and 55℃. Electrochem. Commun., 2010, 12(4): 548-552.
|
[24] |
PATOUX S, DANIEL L, BOURBON C, et al. High voltage spinel oxides for Li-ion batteries: From the material research to the application. J. Power Sources, 2009, 189(1): 344-352.
|
[25] |
ZHONG G B, WANG Y Y, ZHANG Z C, et al. Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4. Electrochim. Acta, 2011, 56(18): 6554-6561.
|
[26] |
ZHONG G B, WANG Y Y, YU Y Q, et al. Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M=Fe, Co, Cr) 5 V cathode materials for lithium ion batteries. J. Power Sources, 2012, 205(1): 385-393.
|
[27] |
SHIN D W, MANTHIRAM A. Surface-segregated, high-voltage spinel LiMn1.5Ni0.42Ga0.08O4 cathodes with superior high-tempera-ture cyclability for lithium-ion batteries. Electrochem. Commun., 2011, 13(11): 1213-1216.
|
[28] |
JU B W, WANG X Y, WEI Q L, et al. Synthesis and electrochemical performance of spherical high-voltage LiNi0.5Mn1.5O4. The Chinese Journal of Nonferrous Metals, 2013, 23(6): 1633-1639.
|