[1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669.[2] Geim A K, Novoselov K S. The rise of graphene. Nat. Mater., 2007, 6(3): 183-191.[3] Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530-1534.[4] Yuan W H, Li B Q, Li L. A green synthetic approach to graphene nanosheets for hydrogen adsorption. Applied Surface Science, 2011, 257(23): 10183-10187.[5] Guo S J, Dong S J, Wang E K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. Acs Nano, 2010, 4(1): 547-555.[6] CHEN Cao, ZHAI Wen-Tao, ZHENG Wen-Ge, et al. Preparation and characterization of water-soluble graphene and highly conducting films. Journal of Inorganic Materials, 2011, 26(7): 707-710.[7] Xu C, Wang X, Zhu J W. Graphene-metal particle nanocomposites. J. Phys. Chem. C, 2008, 112(50): 19841-19845.[8] Zhou G M, Wang D W, Li F, et al. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chemistry of Materials, 2010, 22(18): 5306-5313.[9] TAO Li-Hua, CAI Yan, LI Zai-Jun, et al. Electrochemical properties of graphene/CdS quantum dot composites. Journal of Inorganic Materials, 2011, 26(9): 912-916.[10] Liu J C, Liu L, Bai H W, et al. Gram-scale production of graphene oxide–TiO2 nanorod composites: towards high-activity photocatalytic materials. Applied Catalysis B-Environmental, 2011, 106(1/2): 76-82.[11] Paek S M, Yoo E, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/Graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Letters, 2009, 9(1): 72-75.[12] Goldberger J, Sirbuly D J, Law M, et al. ZnO nanowire transistors. J. Phys. Chem., 2005, 109(1): 9-14.[13] Li Q H, Liang Y X, Wan Q, et al. Oxygen sensing characteristics of individual ZnO nanowire transistors. Appl. Phys. Lett., 2004, 85(26): 6389-6391.[14] Wu J L, Shen X P, Jiang L, et al. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites. Appl. Surf. Sci., 2010, 256(9): 2826-2830.[15] Lu T, Zhang Y P, Li H B, et al. Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors. Electrochimica Acta, 2010, 55(13): 4170-4173.[16] Zheng W T, Ho Y M, Tian H W, et al. Field Emission from a composite of graphene sheets and ZnO nanowires. J. Phys. Chem. C, 2009, 113(21): 9164-9168.[17] Lee J M, Pyun Y B, Yi J, et al. ZnO nanorod-graphene hybrid architectures for multifunctional conductors. J. Phys. Chem. C, 2009, 113(44): 19134-19138.[18] Hummers W S, Offeman R E. Preparation of graphitic oxide. J. Am. Chem. Soc., 1958, 80(6): 1339.[19] 袁文辉, 李保庆, 李 莉(YUAN Wen-Hui, et al). 改进液相氧化还原法制备高性能氢气吸附用石墨烯. 物理化学学报(Acta Phys. Chim. Sinica), 2011, 27(9): 2244-2250.[20] Lv W, Tang D M, He Y B, et al. Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. ACS Nano, 2009, 3(11): 3730-3736.[21] Lerf A, He H Y, Forster M, et al. Structure of graphite oxide revisited. J. Phys. Chem. B, 1998, 102(23): 4477-4482.[22] Gomez-Navarro C, Weitz R T, Bittner A M, et al. Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 2007, 7(11): 3499-3503.[23] Liu J W, Li X J, Dai L M. Water-assisted growth of aligned carbon nanotube-ZnO heterojunction arrays. Adv. Mater., 2006, 18(13): 1740-1744.[24] Zhang N, Sun J, Jiang D Y. Anchoring zinc oxide quantum dots on functionalized multi-walled carbon nanotubes by covalent coupling. Carbon, 2009, 44(5): 1214-1219.[25] Vietmeyer F, Seger B, Kamat P V. Anchoring ZnO particles on functionalized single wall carbon nanotubes. Excited state interactions and charge collection. Adv. Mater., 2007, 19(19): 2935-2940. |