无机材料学报 ›› 2024, Vol. 39 ›› Issue (11): 1245-1253.DOI: 10.15541/jim20240218 CSTR: 32189.14.10.15541/jim20240218
丁宁宁1,2(), 孙建华1,2, 韦旭1,2, 孙丽霞1,2(
)
收稿日期:
2024-04-26
修回日期:
2024-06-24
出版日期:
2024-11-20
网络出版日期:
2024-07-16
通讯作者:
孙丽霞, 副教授. E-mail: binglin0628@163.com作者简介:
丁宁宁(1997-), 女, 硕士研究生. E-mail: dingning1585@163.com
基金资助:
DING Ningning1,2(), SUN Jianhua1,2, WEI Xu1,2, SUN Lixia1,2(
)
Received:
2024-04-26
Revised:
2024-06-24
Published:
2024-11-20
Online:
2024-07-16
Contact:
SUN Lixia, associate professor. E-mail: binglin0628@163.comAbout author:
DING Ningning (1997-), female, Master candidate. E-mail: dingning1585@163.com
Supported by:
摘要:
氨气是一种有害的大气污染物, 对人类健康和生态环境造成严重的危害, 因此开发低能耗、高性能的氨气实时监测系统势在必行。本工作以MoO3和吡咯单体(Py)为原料, FeCl3为氧化剂, 对氨基苯磺酸(pABSA)为阴离子表面活性剂, 采用原位化学氧化聚合法制备了pABSA修饰的MoO3/聚吡咯(PPy)复合材料。通过不同手段对材料的微观结构进行表征, 探究了pABSA修饰对MoO3/PPy复合材料气敏性能的影响。结果表明: pABSA-MoO3/PPy复合材料在室温下对质量浓度1×105 µg/L氨气的响应值为188%, 为纯PPy(22%)的~8倍, 并且表现出优异的选择性和稳定性。气敏性能提升归因于MoO3与PPy之间形成的异质结以及pABSA的修饰使材料表面载流子增多。
中图分类号:
丁宁宁, 孙建华, 韦旭, 孙丽霞. 对氨基苯磺酸修饰MoO3/PPy复合材料室温下对氨气的监测[J]. 无机材料学报, 2024, 39(11): 1245-1253.
DING Ningning, SUN Jianhua, WEI Xu, SUN Lixia. Monitoring Ammonia at Room Temperature of p-Aminobenzene Sulfonic Acid Modified MoO3/PPy Composites[J]. Journal of Inorganic Materials, 2024, 39(11): 1245-1253.
图4 样品的电镜图和面元素扫描图
Fig. 4 Electron microscopy and surface element scanning of samples (a-d) SEM images of (a) MoO3, (b) PPy, (c) MP10 and (d) MPA40; (e) TEM and (f) HRTEM images of MPA40; (g-l) Element mappings of MPA40
Sample | Zeta potential/mV |
---|---|
PPy | -13 |
MP10 | -18 |
MPA20 | -25 |
MPA30 | -27 |
MPA40 | -33 |
MPA50 | -30 |
MPA60 | -30 |
表1 材料的Zeta电位值
Table 1 Zeta potential of the materials
Sample | Zeta potential/mV |
---|---|
PPy | -13 |
MP10 | -18 |
MPA20 | -25 |
MPA30 | -27 |
MPA40 | -33 |
MPA50 | -30 |
MPA60 | -30 |
图5 样品的电学性能测试
Fig. 5 Electrical properties tests of samples (a) EIS plots of PPy, MP10 and MPA40; (b) Mott-Schottky plots of MoO3 and MPA40; Colorful figures are available on website
图9 纯PPy、MP10、MPA40对不同浓度水平氨气的(a)暂态响应和(b)线性拟合曲线
Fig. 9 (a) Transient response and (b) linear fitting curves of pure PPy, MP10 and MPA40 to different concentration levels of ammonia
Material | T/℃ | Mass concentration/ (µg·L-1) | Response/% | Ref. |
---|---|---|---|---|
PPy | RT | 1×105 | 34.7 | [ |
PPy-V2O5-MnO2 | RT | 0.2×105 | 45.67 | [ |
MXene/MoS2/PPy | RT | 0.1×105 | 108 | [ |
PPy/CeO2 | RT | 50×105 | 93.4 | [ |
NiO/PPy | RT | 45 | 65 | [ |
rGO-PPy-SnO2 | RT | 0.1×105 | 53 | [ |
PPy-ZnO-CSA | RT | 1.2×105 | 79 | [ |
pABSA-MoO3/PPy | RT | 1×105 | 188 | This work |
表2 不同材料对氨气的气敏性能比较
Table 2 Ammonia sensing properties of different materials
Material | T/℃ | Mass concentration/ (µg·L-1) | Response/% | Ref. |
---|---|---|---|---|
PPy | RT | 1×105 | 34.7 | [ |
PPy-V2O5-MnO2 | RT | 0.2×105 | 45.67 | [ |
MXene/MoS2/PPy | RT | 0.1×105 | 108 | [ |
PPy/CeO2 | RT | 50×105 | 93.4 | [ |
NiO/PPy | RT | 45 | 65 | [ |
rGO-PPy-SnO2 | RT | 0.1×105 | 53 | [ |
PPy-ZnO-CSA | RT | 1.2×105 | 79 | [ |
pABSA-MoO3/PPy | RT | 1×105 | 188 | This work |
[1] | GUPTA V, MALIK R, KUMAR L. Highly efficient and cost- effective polyaniline-based ammonia sensor on the biodegradable paper substrate at room temperature. Materials Chemistry and Physics, 2023, 310: 128388. |
[2] | LI P P, WANG B, QIN C, et al. Band-gap-tunable CeO2 nanoparticles for room-temperature NH3 gas sensors. Ceramics International, 2020, 46(11): 19232. |
[3] |
KWAK D, LEI Y, MARIC R. Ammonia gas sensors: a comprehensive review. Talanta, 2019, 204: 713.
DOI PMID |
[4] | YUAN K P, ZHU L Y, YANG J H, et al. Precise preparation of WO3@SnO2 core shell nanosheets for efficient NH3 gas sensing. Journal of Colloid and Interface Science, 2020, 568: 81. |
[5] | GAUTAM S K, PANDA S. Highly sensitive Cu-ethylenediamine/ PANI composite sensor for NH3 detection at room temperature. Talanta, 2023, 258: 124418. |
[6] | NAKATE U T, BHUYAN P, YU Y T, et al. Synthesis and characterizations of highly responsive H2S sensor using p-type Co3O4 nanoparticles/nanorods mixed nanostructures. International Journal of Hydrogen Energy, 2022, 47(12): 8145. |
[7] | WEN X H, SUN J H, SUN L X, et al. Preparation and acetone sensing properties of CuO-CeO2 nanocomposites with p-n heterostructures. Fine Chemistry, 2021, 38(4): 736. |
[8] | ANANDA S R, KUMARI L, MURUGENDRAPPA M V. Studies on room-temperature acetone sensing properties of ZnCo2O4/PPy and MnCo2O4/PPy nanocomposites for diabetes diagnosis. Applied Physics A, 2022, 128(8): 669. |
[9] |
SETKA M, CALAVIA R, VOJKUVKA L, et al. Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles. Scientific Reports, 2019, 9: 8465.
DOI PMID |
[10] | GAO L, YIN C Q, LUO Y Y, et al. Facile synthesis of the composites of polyaniline and TiO2 nanoparticles using self-assembly method and their application in gas sensing. Nanomaterials, 2019, 9(4): 493. |
[11] | SETKA M, BAHOS F A, MATATAGUI D, et al. Love wave sensors based on gold nanoparticle-modified polypyrrole and their properties to ammonia and ethylene. Sensors and Actuators B: Chemical, 2020, 304: 127337. |
[12] | SOOD Y, PAWAR V S, MUDILA H, et al. A review on synthetic strategies and gas sensing approach for polypyrrole-based hybrid nanocomposites. Polymer Engineering and Science, 2021, 61(12): 2949. |
[13] | ZHANG D Z, WU Z L, ZONG X Q, et al. Fabrication of polypyrrole/ Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application. Sensors and Actuators B: Chemical, 2018, 274: 575. |
[14] | KAUR A, KUMAR R. Sensing of ammonia at room temperature by polypyrrole-tin oxide nanostructures: investigation by Kelvin probe force microscopy. Sensors and Actuators A: Physical, 2016, 245: 113. |
[15] | JAIN S, KARMAKAR N, SHAH A, et al. Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: effect of CSA doping and their structural, chemical, thermal and gas sensing behavior. Applied Surface Science, 2017, 396: 1317. |
[16] | MA Y Z, ZHANG S, WANG Q, et al. Ag-decorated MoO3 microspheres gas sensor for triethylamine detection with rapid response/recovery. Inorganic Chemistry Communications, 2023, 157: 111442. |
[17] | WANG C, YANG M, LIU L H, et al. One-step synthesis of polypyrrole/Fe2O3 nanocomposite and the enhanced response of NO2 at low temperature. Journal of Colloid and Interface Science, 2020, 560: 312. |
[18] | MANE A T, NAVALE S T, PATIL V B. Room temperature NO2 gas sensing properties of DBSA doped PPy-WO3 hybrid nanocomposite sensor. Organic Electronics, 2015, 19: 15. |
[19] | SOBHANI-NASAB A, BEHVANDI S, KARIMI M A, et al. Synergetic effect of graphene oxide and C3N4 as co-catalyst for enhanced photocatalytic performance of dyes on Yb2(MoO4)3/ YbMoO4 nanocomposite. Ceramics International, 2019, 45(14): 17847. |
[20] | NEISI Z, ANSARI-ASL Z, JAFARINEJAD-FARSANGI S, et al. Synthesis, characterization and biocompatibility of polypyrrole/ Cu(II) metal-organic framework nanocomposites. Colloids and Surfaces B: Biointerfaces, 2019, 178: 365. |
[21] | ZHOU K F, SHEN D F, LI X, et al. Molybdenum oxide-based metal-organic framework/polypyrrole nanocomposites for enhancing electrochemical detection of dopamine. Talanta, 2020, 209: 120507. |
[22] | NALAGE S R, NAVALE S T, MANE R S, et al. Preparation of camphor-sulfonic acid doped PPy-NiO hybrid nanocomposite for detection of toxic nitrogen dioxide. Synthetic Metals, 2015, 209: 426. |
[23] |
DUONG N H, NGUYEN T T, TRAN D V, et al. Synergistic effects in the gas sensitivity of polypyrrole/single wall carbon nanotube composites. Sensors, 2012, 12(6): 7965.
DOI PMID |
[24] | IDRIS N H, WANG J Z, CHOU S L, et al. Effects of polypyrrole on the performance of nickel oxide anode materials for rechargeable lithium-ion batteries. Journal of Materials Research, 2011, 26(7): 860. |
[25] | JIAO Y, CHEN G, CHEN D H, et al. Bimetal-organic framework assisted polymerization of pyrrole involving air oxidant to prepare composite electrodes for portable energy storage. Journal of Materials Chemistry A, 2017, 5(45): 23744. |
[26] | ZAKHAROVA G S, SCHMIDT C, OTTMANN A, et al. Microwave-assisted hydrothermal synthesis and electrochemical studies of α- and h-MoO3. Journal of Solid State Electrochemistry, 2018, 22(12): 3651. |
[27] | RAUT B T, CHOUGULE M A, GHANWAT A A, et al. Polyaniline-CdS nanocomposites: effect of camphor sulfonic acid doping on structural, microstructural, optical and electrical properties. Journal of Materials Science-Materials in Electronics, 2012, 23(12): 2104. |
[28] | WEI Z Q, HOU S, LIN X, et al. Unexpected boosted solar water oxidation by nonconjugated polymer-mediated tandem charge transfer. Journal of the American Chemical Society, 2020, 142(52): 21899. |
[29] | YU W L, LI F, HUANG T, et al. Go beyond the limit: rationally designed mixed-dimensional perovskite/semiconductor heterostructures and their applications. Innovation, 2023, 4(1): 100363. |
[30] | HAN Z Z, WANG J J, LIAO L, et al. Phosphorus doped TiO2 as oxygen sensor with low operating temperature and sensing mechanism. Applied Surface Science, 2013, 273: 349. |
[31] | HONGSITH N, CHANSURIYA S, KOENROBKET S, et al. Investigating of transition state on the Pd-Au decorated ZnO nanoparticle layers for gas sensor application. Heliyon, 2023, 9(9): 19402. |
[32] | CHANG J N, ZHANG H J, CAO J L, et al. Ultrahigh sensitive and selective triethylamine sensor based on h-BN modified MoO3 nanowires. Advanced Powder Technology, 2022, 33(2): 103432. |
[33] | IKRAM M, LIU L J, LV H, et al. Intercalation of Bi2O3/Bi2S3 nanoparticles into highly expanded MoS2 nanosheets for greatly enhanced gas sensing performance at room temperature. Journal of Hazardous Materials, 2019, 363: 335. |
[34] | YU J G, YUE L, LIU S W, et al. Hydrothermal preparation and photocatalytic activity of mesoporous Au-TiO2 nanocomposite microspheres. Journal of Colloid and Interface Science, 2009, 334(1): 58. |
[35] | ZHAO H Y, SUN J H, LIU J M, et al. UV-triggered carrier transport regulation of fibrous NiO/SnO2 heterostructures for triethylamine detection. Chemical Engineering Journal, 2023, 476: 146687. |
[36] | LI X, SUN L J, YANG X Y, et al. Enhancing the colorimetric detection of H2O2 and ascorbic acid on polypyrrole coated fluconazole-functionalized POMOFs. Analyst, 2019, 144(10): 3347. |
[37] | ZHANG J, WU C Y, LI T, et al. Highly sensitive and ultralow detection limit of room-temperature NO2 sensors using in-situ growth of PPy on mesoporous NiO nanosheets. Organic Electronics, 2020, 77: 105504. |
[38] | QIAO T T, WANG G S, SHEN Y B, et al. Rational design of CuO/In2O3 heterostructures with flower-like structures for low temperature detection of formaldehyde. Journal of Alloys and Compounds, 2022, 896: 16959. |
[39] | LIU J Y, DAI M J, WANG T S, et al. Enhanced gas sensing properties of SnO2 hollow spheres decorated with CeO2 nanoparticles heterostructure composite materials. ACS Applied Materials & Interfaces, 2016, 8(10): 6669. |
[40] | ANDREOLI E, ROONEY D A, REDINGTON W, et al. Electrochemical deposition of hierarchical micro/nanostructures of copper hydroxysulfates on polypyrrole-polystyrene sulfonate films. Journal of Physical Chemistry C, 2011, 115(17): 8725. |
[41] | KARMAKAR N, FERNANDES R, JAIN S, et al. Room temperature NO2 gas sensing properties of p-toluenesulfonic acid doped silver-polypyrrole nanocomposite. Sensors and Actuators B: Chemical, 2017, 242: 118. |
[42] | XU L, GE M Y, ZHANG F, et al. Nanostructured of SnO2/NiO composite as a highly selective formaldehyde gas sensor. Journal of Materials Research, 2020, 35(22): 3079. |
[43] | LAWANIYA S D, KUMAR S, YU Y, et al. Ammonia sensing properties of PPy nanostructures (urchins/flowers) towards low-cost and flexible gas sensors at room temperature. Sensors and Actuators B: Chemical, 2023, 382: 133566. |
[44] | MALOOK K, KHAN H, SHAH M. Ammonia sensing behavior of polypyrrole-bimetallic oxide composites. Polymer Composites, 2020, 41(7): 2610. |
[45] | LU L, LIU M Y, SUI Q L, et al. MXene/MoS2 nanosheet/ polypyrrole for high-sensitivity detection of ammonia gas at room temperature. Materials Today Communications, 2023, 35: 106239. |
[46] | HUSAIN A, AL-ZAHRANI S A, AL OTAIBI A, et al. Fabrication of reproducible and selective ammonia vapor sensor-pellet of polypyrrole/cerium oxide nanocomposite for prompt detection at room temperature. Polymers, 2021, 13(11): 1829. |
[47] | HIEN H T, THU D T A, NGAN P Q, et al. High NH3 sensing performance of NiO/PPy hybrid nanostructures. Sensors and Actuators B: Chemical, 2021, 340: 129986. |
[48] | AMITH S L, GURUNATHAN K. Active sites tailored rGO-PPy nanosheets with high crystalline tetragonal SnO2 nanocrystals for ammonia e-sensitization at room temperature. Journal of Alloys and Compounds, 2023, 960: 170819. |
[49] | SHEN C Y, HUNG T T, CHUANG Y W, et al. Room-temperature NH3 gas surface acoustic wave (SAW) sensors based on graphene/PPy composite films decorated by Au nanoparticles with ppb detection ability. Polymers, 2023, 15(22): 4353. |
[50] | PATOWARY B B, LASKAR S, NARZARY R, et al. Synthesis, characterization, and study of NO2 gas sensing behavior of CSA doped PANi-Ta2O5 nanocomposite. IEEE Sensors Journal, 2020, 20(7): 3429. |
[1] | 李文博, 钱荣, 卓尚军, 江鸿, 盛成, 朱月琴. 不同形貌MoS2的制备及对NH3气敏性能的研究[J]. 无机材料学报, 2022, 37(10): 1135-1140. |
[2] | 储宇星, 刘海瑞, 闫爽. SnO2/NiO复合半导体纳米纤维的制备及气敏性能研究[J]. 无机材料学报, 2021, 36(9): 950-958. |
[3] | 伍凡, 赵梓俨, 黎邦鑫, 董帆, 周莹. Bi2O2CO3/PPy界面氧空位构建及其可见光下NO氧化机理研究[J]. 无机材料学报, 2020, 35(5): 541-548. |
[4] | 罗清,苑青,蒋前勤,于乃森. Cu-SSZ-13/碳化硅废料复合材料的合成及其 NH3-SCR性能研究[J]. 无机材料学报, 2019, 34(9): 953-960. |
[5] | 隋丽丽,王润,赵丹,申书昌,孙立,徐英明,程晓丽,霍丽华. 多级结构α-MoO3空心微球的构筑及其对有机染料的吸附性能[J]. 无机材料学报, 2019, 34(2): 193-200. |
[6] | 梁继然, 张叶, 杨然, 赵一瑞, 郭津榜. VO2(B)/ZnO异质复合纳米棒结构的室温NH3敏感性能研究[J]. 无机材料学报, 2018, 33(12): 1323-1329. |
[7] | 张玉晖, 易清风, 刘小平, 向柏霖. 金属掺杂聚吡咯碳化物PPY-M的制备及其氧还原反应电催化活性[J]. 无机材料学报, 2014, 29(3): 269-274. |
[8] | 刘建华, 张施露, 于 美, 安军伟, 李松梅. 石墨烯接枝聚吡咯复合物的原位合成及其电容特性研究[J]. 无机材料学报, 2013, 28(4): 403-408. |
[9] | 陈同云, 朱小华, 储向峰, 葛秀涛, 董永平, 叶明富. Cu2+掺杂ZnO纳米棒的制备及气敏性能研究[J]. 无机材料学报, 2012, 27(10): 1089-1094. |
[10] | 王志敏, 唐新村, 肖元化, 余晓静, 张 亮, 贾殿赠, 谌谷春. 聚吡咯/碳纳米管复合纳米材料的制备、表征及其气敏性能[J]. 无机材料学报, 2011, 26(9): 961-968. |
[11] | 熊浩洋,胡彬彬,薛中会,蔡 莉,戴树玺,杜祖亮. 牛血清蛋白单层分子膜诱导生长PbS晶体[J]. 无机材料学报, 2010, 25(1): 63-67. |
[12] | 温怡芸,刘志敏,蔡黎,郭家秀,龚茂初,陈耀强. Pt/MoO3/ZrO2催化剂的制备及三效催化性能的研[J]. 无机材料学报, 2008, 23(6): 1267-1271. |
[13] | 管自生,张玉,卢延军. 可控尺寸和形貌的多钼酸聚集体和 MoO3粉体的制备[J]. 无机材料学报, 2008, 23(3): 636-640. |
[14] | 李玲,潘庆谊,程知萱,董晓雯,陈海华. CNT-WO3元件的氨敏性能研究[J]. 无机材料学报, 2006, 21(1): 151-156. |
[15] | 徐甲强,王焕新,张建荣,沈嘉年. 微波水解法制备纳米ZnO及其气敏特性研究[J]. 无机材料学报, 2004, 19(6): 1441-1445. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||