无机材料学报 ›› 2022, Vol. 37 ›› Issue (6): 669-675.DOI: 10.15541/jim20210421 CSTR: 32189.14.10.15541/jim20210421
        
               		焦博新( ), 刘兴翀(
), 刘兴翀( ), 全子威, 彭永姗, 周若男, 李海敏
), 全子威, 彭永姗, 周若男, 李海敏
                  
        
        
        
        
    
收稿日期:2021-07-05
									
				
											修回日期:2021-09-18
									
				
									
				
											出版日期:2022-06-20
									
				
											网络出版日期:2021-09-27
									
			通讯作者:
					刘兴翀, 副教授. E-mail: Liuxc_76@163.com作者简介:焦博新(1999-), 男, 硕士研究生. E-mail: jiaoboxin21@mails.ucas.ac.cn
				
							基金资助:
        
               		JIAO Boxin( ), LIU Xingchong(
), LIU Xingchong( ), QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin
), QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin
			  
			
			
			
                
        
    
Received:2021-07-05
									
				
											Revised:2021-09-18
									
				
									
				
											Published:2022-06-20
									
				
											Online:2021-09-27
									
			Contact:
					LIU Xingchong, associate professor. E-mail: Liuxc_76@163.comAbout author:JIAO Boxin (1999–), male, Master candidate. E-mail: jiaoboxin21@mails.ucas.ac.cn				
							Supported by:摘要:
钙钛矿太阳电池以其优异的性能和发展潜力而成为新能源领域研究热点, 但仍然存在缺陷密度大、稳定性差等不足。本研究通过实验对比多种常见氨基酸的掺杂效果后, 将小分子有机物L-精氨酸引入钙钛矿前驱体溶液, 并通过二元两步法制备钙钛矿太阳电池。L-精氨酸掺杂提升了器件的光电性能, 光电效率由18.81%提升到21.86%。L-精氨酸通过降低钙钛矿层缺陷密度(由4.83×1016 cm-3降低到3.45×1016 cm-3), 减少了载流子非辐射复合, 延长了载流子的平均寿命, 且钙钛矿晶粒尺寸增大、晶界减少、薄膜吸光能力增强且稳定性提升, 迟滞效应得到抑制。这是由于L-精氨酸的多种基团与钙钛矿材料作用钝化了缺陷造成的。本研究为钙钛矿太阳电池的性能优化提供了一种借鉴方法。
中图分类号:
焦博新, 刘兴翀, 全子威, 彭永姗, 周若男, 李海敏. L-精氨酸掺杂钙钛矿太阳电池性能研究[J]. 无机材料学报, 2022, 37(6): 669-675.
JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine[J]. Journal of Inorganic Materials, 2022, 37(6): 669-675.
 
																													图S2 (a)PbI型缺陷的俯视图和(b)掺杂不同氨基酸的PSCs的PCE箱式分布
Fig. S2 (a) Top view of PbI type defects and (b) PCE box distributions of PSCs doped with different amino acids
 
																													图2 (a, c)未掺杂和(b, d)掺杂L-精氨酸的钙钛矿薄膜的(a, b)SEM照片和(c, d)AFM图
Fig. 2 (a, b) Typical SEM images and (c, d) AFM images of perovskite films (a, c) without and (b, d) with L-arginine doping
 
																													图3 掺杂与未掺杂L-精氨酸的PSCs的(a)XRD图谱、(b)UV-Vis图谱、(c)FT-IR图谱和(d)FT-IR图谱的局部放大图
Fig. 3 (a) XRD patterns, (b) UV-Vis spectra, (c) FT-IR spectra, and (d) local amplification of (c) for undoped and doped perovskite films without and with L-arginine doping Colorful figures are available on website
 
																													图4 未掺杂与掺杂L-精氨酸的钙钛矿薄膜的(a)PL图谱(b) TRPL图谱和拟合结果
Fig. 4 (a) PL spectra, (b) TRPL spectra and fitting resuLts of perovskite films with and without L-arginine doping Colorful figures are available on website
 
																													图5 未掺杂与掺杂L-精氨酸的钙钛矿太阳电池的(a)PCE箱式/正态分布、(b)J-V曲线、(c)IPCE及积分电流密度曲线和(d)正/反向扫描迟滞曲线
Fig. 5 (a) PCE box/normal distribution, (b) J-V curves, (c) IPCE and integral current density curves, and (d) forward and reverse scan J-V curves of PSCs with and without L-arginine doping Colorful figures are available on website
| Concentration/ (mg·L-1) | JSC/(mA·cm-2) | VOC/V | FF/% | PCE/% | 
|---|---|---|---|---|
| 0 | 21.80 | 1.119 | 77.1 | 18.81 | 
| 40 | 22.20 | 1.121 | 77.0 | 19.15 | 
| 60 | 22.55 | 1.131 | 78.6 | 20.03 | 
| 80 | 23.68 | 1.143 | 80.8 | 21.86 | 
| 100 | 22.74 | 1.131 | 79.4 | 20.42 | 
表1 不同L-精氨酸掺杂浓度的PSCs器件的光电性能参数
Table 1 Photoelectric parameters of PSCs doped with different concentrations of L-arginine
| Concentration/ (mg·L-1) | JSC/(mA·cm-2) | VOC/V | FF/% | PCE/% | 
|---|---|---|---|---|
| 0 | 21.80 | 1.119 | 77.1 | 18.81 | 
| 40 | 22.20 | 1.121 | 77.0 | 19.15 | 
| 60 | 22.55 | 1.131 | 78.6 | 20.03 | 
| 80 | 23.68 | 1.143 | 80.8 | 21.86 | 
| 100 | 22.74 | 1.131 | 79.4 | 20.42 | 
 
																													图6 (a)未掺杂与(b)掺杂L-精氨酸PSCs的SCLC曲线, 未掺杂与掺杂L-精氨酸PSCs的(c)EIS阻抗谱图和(d)暗态J-V曲线
Fig. 6 SCLC curve of PSCs (a) undoped and (b) doped with L-arginine, (c) EIS impedance spectra and (d) dark J-V curves of PSCs with and without L-arginine doping PC61 BM: [6,6]-phenyl-C61-butyric acid methyl ester
 
																													图7 未掺杂与掺杂L-精氨酸钙钛矿太阳电池的(a)400 s电流及电压稳定性测试, (b)480 h器件稳定性测试
Fig. 7 (a) Current and voltage stability tests for 400 s, and (b) device stability tests for 480 h of PSCs with and without L-arginine doping
| [1] | KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009,  131(17): 6050-6051. DOI URL | 
| [2] | JAEKI J, MINJIN K, JONGDEUK S, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021,  592(7854): 381-385. DOI URL | 
| [3] | LI Y, JI L, LIU R G, et al. A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J. Mater. Chem. A, 2018,  6: 12842-12875. DOI URL | 
| [4] | LONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015,  347: 967-970 DOI URL | 
| [5] | UNGER E L, KEGELMANN L, SUCHAN K, et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A, 2017,  5: 11401-11409. DOI URL | 
| [6] | SANG I S, PARK B W, DONG U L, et al. long-term chemical aging of hybrid halide perovskites. Nano letters, 2019,  19(8): 5604-5611. DOI URL | 
| [7] | HODES G, CAHEN D. Photovoltaics: perovskite cells roll forward. Nat. Photonics, 2014,  8(2): 87-88. DOI URL | 
| [8] | GUO Z, ZHAO S, LIU A, et al. Niobium incorporation into CsPbI2Br for stable and efficient all inorganic perovskite solar cells. ACS Appl. Mater. Interfaces, 2019,  11(22): 19994-20003. DOI URL | 
| [9] | AKA B, AR C, NVA B, et al. Defect states influencing hysteresis and performance of perovskite solar cells. Solar Energy, 2020,  211: 345-353. DOI URL | 
| [10] | GUO Y, XUE Y, XU L. Interfacial interactions and enhanced optoelectronic properties of GaN/perovskite heterostructures: insight from first-principles calculations. J. Mater. Sci., 2021,  56(19): 11352-11363. DOI URL | 
| [11] | YU J C, KIM D B, JUNG E D, et al. High-performance perovskite light-emitting diodes via morphological control of perovskite films. Nanoscale, 2016,  8(13): 7036-7042. DOI URL | 
| [12] | LI N, TAO S, CHEN Y, et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy, 2019,  4(5): 408-415. DOI URL | 
| [13] | DOHERTY T, WINCHESTER A J, MACPHERSON S, et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature, 2020,  580(7803): 360-366. DOI URL | 
| [14] | DU J, FENG L, GUO X, et al. Enhanced efficiency and stability of planar perovskite solar cells by introducing amino acid to SnO2/ perovskite interface. J. Power Sources, 2020,  455: 227974. DOI URL | 
| [15] | CAO Y, WANG N N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018,  562(7726): 249-253. DOI URL | 
| [16] | LIU W, HU Z L, WANG L, et al. Passiviation of l-3-(4- pyridyl)-alanineon interfacial defects of perovskite solar cell. J. Inorg. Mater., 2021,  36(6): 629-637. DOI URL | 
| [17] | WANG R, XUE J, WANG K L, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 2019,  366(6472): 1509-1513. DOI URL | 
| [18] | YANG S, DAI J, YU Z H, et al. Tailoring passivation molecular structures for extremely small open circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc., 2020,  142(27): 11937-11938. DOI URL | 
| [19] | LEE J W, BAE S H, HSIEH Y T, et al. A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem, 2017,  3(2): 290-302. DOI URL | 
| [20] | NIU T, LU J, MUNIR R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater., 2018,  30(16): 1706576. DOI URL | 
| [21] | FEI C lI B, ZHANG R, et al. Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 Film. Adv. Energy Mater., 2017, 7(9): 1602017. DOI URL | 
| [22] | GAO Y M, JIANG W L, YANG T Y, et al. Fabrication and characterization of high stability (EDA)(FA)2[Pb3I10] layered perovskite film. J. Inorg. Mater., 2016,  31(10): 1129-1134. DOI URL | 
| [23] | SI H, ZHANG Z, LIAO Q, et al. A-site management for highly crystalline perovskites. Adv. Mater., 2020, 32(4): 201904702. | 
| [24] | HU J, XU X, CHEN Y, et al. Overcoming photovoltage deficit via natural amino acid passivation for efficient perovskite solar cells and modules. J. Mater. Chem. A, 2021,  9(9): 5857-5865. DOI URL | 
| [25] | BRENES R, GUO D Y, OSHEROV A, et al. Metal halide perovskite polycrystalline films exhibiting properties of single crystals. Joule, 2017,  1(1): 155-167. DOI URL | 
| [26] | NI Z Y, BAO C X, LIU Y, et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science, 2020,  367(6484): 1352-1358. DOI URL | 
| [27] | GUO X B, WEI Y U, LI J, et al. Improving microstructure and photoelectric performance of the perovskite material via mixed solvents. J. Inorg. Mater., 2017,  32(8): 870-876. DOI URL | 
| [28] | JIN W Y, JIHUN J, UNSOO K, et al. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethano l-based formamidinium lead tri-iodide precursor solution. Joule, 2021,  5(9): 2420-2436. DOI URL | 
| [29] | RONG Y, YUE H, RAVISHANKAR S, et al. Tunable hysteresis effect for perovskite solar cells. Energy Environ. Sci., 2017,  10(1): 2383-2391. DOI URL | 
| [30] | LIU W, LIU N, JI S, et al. Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nanomicro lett., 2020, 12(9): 207-217. | 
| YI H, XIAO Y D, SIMON SCHEINER, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017,  358(6367): 1192-1197. DOI URL | |
| [31] | YI H, XIAO Y D, SIMON SCHEINER, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017,  358(6367): 1192-1197. DOI URL | 
| [1] | 韩旭, 姚恒大, 吕梅, 陆红波, 朱俊. 单分子液晶添加剂在甲脒铅碘钙钛矿太阳能电池中的应用[J]. 无机材料学报, 2023, 38(9): 1097-1102. | 
| [2] | 杨新月, 董庆顺, 赵伟冬, 史彦涛. 基于对氯苄胺的2D/3D钙钛矿太阳能电池[J]. 无机材料学报, 2022, 37(1): 72-78. | 
| [3] | 刘雯雯, 胡志蕾, 王立, 曹梦莎, 张晶, 张婧, 张帅, 袁宁一, 丁建宁. L-3-(4-吡啶基)-丙氨酸钝化钙钛矿太阳电池界面缺陷[J]. 无机材料学报, 2021, 36(6): 629-636. | 
| [4] | 董少杰,王旭东,沈国芳,王晓虹,林开利. 生物陶瓷支架的功能改性及应用研究进展[J]. 无机材料学报, 2020, 35(8): 867-881. | 
| [5] | 徐顺建, 肖宗湖, 罗晓瑞, 钟炜, 罗永平, 欧惠. 碳纳米管和二甲基亚砜对钙钛矿太阳电池中PEDOT:PSS空穴传输层的协同影响[J]. 无机材料学报, 2018, 33(6): 641-647. | 
| [6] | 范 平, 古 迪, 梁广兴, 罗景庭, 张东平, 陈聚龙. 单源热蒸发制备有机无机杂化CH3NH3PbI3薄膜及其性能表征[J]. 无机材料学报, 2015, 30(10): 1105-1109. | 
| [7] | 赵德森, 洪建和, 高金飞, 何明中, 何 岗. SnO-CaO-P2O5体系无铅封接玻璃的形成与性能优化研究[J]. 无机材料学报, 2010, 25(10): 1053-1057. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||