无机材料学报 ›› 2020, Vol. 35 ›› Issue (10): 1130-1136.DOI: 10.15541/jim20190630 CSTR: 32189.14.10.15541/jim20190630
所属专题: 能源材料论文精选(二):超级电容器与储能电池(2020)
收稿日期:
2019-12-11
修回日期:
2020-02-15
出版日期:
2020-10-20
网络出版日期:
2020-03-05
作者简介:
丁卓峰(1996-), 男, 硕士研究生. E-mail: 1539342975@qq.com.
基金资助:
DING Zhuofeng1(),YANG Yongqiang2,LI Zaijun1(
)
Received:
2019-12-11
Revised:
2020-02-15
Published:
2020-10-20
Online:
2020-03-05
About author:
DING Zhuofeng(1996-), male, Master candidate. E-mail:1539342975@qq.com
Supported by:
摘要:
通过一步水热法制备组氨酸功能化碳点/石墨烯气凝胶(His-CDs/GA)。该材料具有独特的三维多孔结构、丰富的含氮和含氧官能团, 有利于电解液离子的快速扩散和提供更多的活性位点。当GO与His-CDs的质量比为2 : 1时, His-CDs/GA-2在1 A·g -1电流密度下比电容达到304 F·g - 1, 比GA(172 F·g -1)提高了76.7%; 当电流密度从1 A·g -1增加到50 A·g -1, 其比电容保持率为71.4%; 在电流密度10 A·g -1下, 循环充放电30000次后, 比电容仍保留93.5%。由His-CDs/GA组装的对称超级电容器展现出高能量密度(在功率密度为250 W/kg时, 能量密度达到10.14 Wh/kg)和良好的循环性能(在5 A·g -1下循环充放电20000次后, 比电容保持率为88.4%)。结果表明, His-CDs/GA是一种应用前景广阔的超级电容器电极材料。
中图分类号:
丁卓峰, 杨永强, 李在均. 组氨酸功能化碳点/石墨烯气凝胶的制备及超级电容器性能[J]. 无机材料学报, 2020, 35(10): 1130-1136.
DING Zhuofeng, YANG Yongqiang, LI Zaijun. Synthesis and Supercapacitor Performance of Histidine-functionalized Carbon Dots/Graphene Aerogel[J]. Journal of Inorganic Materials, 2020, 35(10): 1130-1136.
图3 GA(a)、His-CDs/GA-1(b)、His-CDs/GA-2(c)和His-CDs/ GA-3(d)的SEM照片; GA(e)和His-CDs/GA-2(f)的TEM照片
Fig. 3 SEM images of GA(a), His-CDs/GA-1(b), His-CDs/ GA-2(c), and His-CDs/GA-3(d), and TEM images of GA(e) and His-CDs/GA-2(f)
图6 GA、His-CDs/GA-1、His-CDs/GA-2和His-CDs/GA-3在10 mV·s-1扫描速率下的循环伏安曲线(a)和1 A·g-1电流密度下的恒流充放电曲线(b)
Fig. 6 CV curves (a) at 10 mV·s-1 and GCD curves (b) at 1 A·g-1 of GA, His-CDs/GA-1, His-CDs/GA-2, and His-CDs/ GA-3
图7 His-CDs/GA-2在不同扫描速率下的循环伏安曲线(a)和在不同电流密度下的充放电曲线(b); GA、His-CDs/GA-1、His-CDs/GA-2和His-CDs/GA-3的倍率性能图(c); GA和His-CDs/GA-2在10 A·g-1下的循环性能图(d)
Fig. 7 CV curves at different scan rates (a) and GCD curves at different current densities (b) of His-CDs/GA-2; Rate capabilities of GA, His-CDs/GA-1, His-CDs/GA-2 and His-CDs/GA-3 (c); Cycling performances of GA and His-CDs/GA-2 at 10 A·g-1 (d)
图S4 GA、His-CDs/GA-1、His-CDs/GA-2和His-CDs/GA-3的氮气吸附/脱附等温线(a)和孔径分布曲线(b)
Fig. S4 N2 absorption-desorption isotherms (a) and pore size distributions (b) of GA, His-CDs/GA-1, His-CDs/GA-2 and His-CDs/GA-3
Electrode | Specific capacitance/ (F·g-1) | Current density/ (A·g-1) | Ref. |
---|---|---|---|
RGO/CD | 278 | 0.2 | [ |
N-OMCN@GN | 242.3 | 1 | [ |
N/S-rGAs | 180.5 | 1 | [ |
GQDs-3DG | 268 | 1.25 | [ |
GQD/3DG | 242 | 1.17 | [ |
3D graphene layers | 231.2 | 1 | [ |
3D bubble-like graphene frameworks | 277 | 1 | [ |
His-CDs/GA-2 | 304 | 1 | This work |
表S1 His-CDs/GA-2与其它石墨烯基电极比电容的比较
Table S1 Comparison of the specific capacitance of His-CDs/GA-2 and other graphene-based electrodes
Electrode | Specific capacitance/ (F·g-1) | Current density/ (A·g-1) | Ref. |
---|---|---|---|
RGO/CD | 278 | 0.2 | [ |
N-OMCN@GN | 242.3 | 1 | [ |
N/S-rGAs | 180.5 | 1 | [ |
GQDs-3DG | 268 | 1.25 | [ |
GQD/3DG | 242 | 1.17 | [ |
3D graphene layers | 231.2 | 1 | [ |
3D bubble-like graphene frameworks | 277 | 1 | [ |
His-CDs/GA-2 | 304 | 1 | This work |
图S7 His-CDs/GA-2//His-CDs/GA-2对称电容器在不同扫描速率下的循环伏安曲线(a)和在不同电流密度下的充放电曲线(b)
Fig. S7 CV curves (a) at different scan rates and GCD curves (b) at different current densities of His-CDs/GA-2//His-CDs/ GA-2 symmetrical supercapacitor
图S8 His-CDs/GA-2//His-CDs/GA-2对称电容器在5 A·g-1下循环20000次的循环性能图
Fig. S8 Cycling performance at 5 A·g-1 over 20000 cycles of His-CDs/GA-2//His-CDs/GA-2 symmetrical supercapacitor
[1] |
LI Z, WEI J J, REN J , et al. Hierarchical construction of high- performance all-carbon flexible fiber supercapacitors with graphene hydrogel and nitrogen-doped graphene quantum dots. Carbon, 2019,154:410-419.
DOI URL |
[2] |
LIU D P, LI Q W, LI S , et al. A confinement strategy to prepare N-doped reduced graphene oxide foams with desired monolithic structures for supercapacitors. Nanoscale, 2019,11(10):4362-4368.
DOI URL PMID |
[3] |
HUO J H, XUE Y J, ZHANG X J , et al. Hierarchical porous reduced graphene oxide decorated with molybdenum disulfide for high-performance supercapacitors. Electrochimica Acta , 2018,292:639-645.
DOI URL |
[4] |
LI B, HU N T, SU Y T , et al. Direct inkjet printing of aqueous inks to flexible all-solid-state graphene hybrid micro-supercapacitors. ACS Applied Materials & Interfaces , 2019,11(49):46044-46053.
DOI URL PMID |
[5] |
XIA K S, HUANG Z Y, ZHENG L , et al. Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors. Journal of Power Sources , 2017,365:380-388.
DOI URL |
[6] |
YU D Y, ZHANG Z Q, MENG Y N , et al. The synthesis of hierarchical ZnCo2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance all-solid-state asymmetric supercapacitors. Inorganic Chemistry Frontiers, 2018,5(3):597-604.
DOI URL |
[7] |
LI F, LIU J, MA Y , et al. A monolithic integrated ultra-flexible all- solid-state supercapacitor based on a polyaniline conducting polymer. Journal of Materials Chemistry A , 2019,7(25):15378-15386.
DOI URL |
[8] |
HOANG V C, NGUYEN L H, GOMES V G . High efficiency supercapacitor derived from biomass based carbon dots and reduced graphene oxide composite. Journal of Electroanalytical Chemistry, 2019,832:87-96.
DOI URL |
[9] | WU Z Y, FAN L, TAO Y R , et al. Pomelo peel derived hierarchical porous carbon as electrode materials for high-performance supercapacitor. Chinese Journal of Inorganic Chemistry , 2018,34(7):1249-1260. |
[10] |
CHENG H H, YI F Y, CAO A M , et al. Supermolecule self-assembly promoted porous N, P co-doped reduced graphene oxide for high energy density supercapacitors. ACS Applied Energy Materials, 2019,2(6):4084-4091.
DOI URL |
[11] |
HUANG Y L, GAO A M, SONG X N , et al. Supramolecule-inspired fabrication of carbon nanoparticles in situ anchored graphene nanosheets material for high-performance supercapacitors. ACS Applied Materials & Interfaces, 2016,8(40):26775-26782.
DOI URL PMID |
[12] |
LI Q, CHENG H Y, WU X J , et al. Enriched carbon dots/graphene microfibers towards high-performance micro-supercapacitors. Journal of Materials Chemistry A, 2018,6(29):14112-14119.
DOI URL |
[13] |
SUN X X, CHENG P, WANG H J , et al. Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance. Carbon, 2015,92:1-10.
DOI URL |
[14] |
ZHAO M Y, CUI X X, XU Y S , et al. An ordered mesoporous carbon nanosphere-encapsulated graphene network with optimized nitrogen doping for enhanced supercapacitor performance. Nanoscale, 2018,10(32):15379-15386.
DOI URL PMID |
[15] |
ZHU S J, MENG Q N, WANG L , et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angewandte Chemie-International Edition, 2013,52(14):3953-3957.
DOI URL PMID |
[16] |
TANG Y, RAO L S, LI Z T , et al. Rapid synthesis of highly photoluminescent nitrogen-doped carbon quantum dots via a microreactor with foamy copper for the detection of Hg 2+ ions. Sensors and Actuators B-Chemical , 2018,258:637-647.
DOI URL |
[17] |
QU D, LIU J A, MIAO X et al. Peering into water splitting mechanism of g-C3N4-carbon dots metal-free photocatalyst. Applied Catalysis B-Environmental, 2018,227:418-424.
DOI URL |
[18] |
ALAS M O, GUNGOR A, GENC R , et al. Feeling the power: robust supercapacitors from nanostructured conductive polymers fostered with Mn 2+ and carbon dots. Nanoscale , 2019,11(27):12804-12816.
DOI URL PMID |
[19] | WEI J S, DING C, ZHANG P , et al. Robust negative electrode materials derived from carbon dots and porous hydrogels for high- performance hybrid supercapacitors. Advanced Materials, 2019,31(5):1806197. |
[20] |
WANG H Y, YANG Y Q, ZHOU X Y , et al. NiCo2S4/tryptophan- functionalized graphene quantum dot nanohybrids for high- performance supercapacitors. New Journal of Chemistry, 2017,41(3):1110-1118.
DOI URL |
[21] |
ZHAO Y F, RAN W, HE J , et al. Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Applied Materials & Interfaces , 2015,7(2):1132-1139.
DOI URL PMID |
[22] |
XU Y J, LI X Y, HU G H , et al. Graphene oxide quantum dot-derived nitrogen-enriched hybrid graphene nanosheets by simple photochemical doping for high-performance supercapacitors. Applied Surface Science , 2017,422:847-855.
DOI URL |
[23] |
ZHAO X, DONG H W, XIAO Y , et al. Three-dimensional nitrogen- doped graphene as binder-free electrode materials for supercapacitors with high volumetric capacitance and the synergistic effect between nitrogen configuration and supercapacitive performance. Electrochimica Acta, 2016,218:32-40.
DOI URL |
[24] |
WANG M, YANG J, JIA K L , et al. Boosting supercapacitor performance of graphene by coupling with nitrogen-doped hollow carbon frameworks. Chemistry-A European Journal , 2020,26(13):2897-2903.
DOI URL |
HU Z X, LI S S, CHENG P P , et al. N, P-co-doped carbon nanowires prepared from bacterial cellulose for supercapacitor. Journal of Materials Science , 2016,51(5):2627-2633.
DOI URL |
[1] | 杨恩东, 李宝乐, 张珂, 谭鲁, 娄永兵. ZnCo2O4-ZnO@C@CoS核壳复合材料的制备及其在超级电容器中的应用[J]. 无机材料学报, 2024, 39(5): 485-493. |
[2] | 晁少飞, 薛艳辉, 吴琼, 伍复发, MUHAMMAD Sufyan Javed, 张伟. MXene异质结Ti-O-H-O电子快速通道促进高效率储钾[J]. 无机材料学报, 2024, 39(11): 1212-1220. |
[3] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[4] | 孙鹏, 张绍宁, 毕辉, 董武杰, 黄富强. 基于结构调节碳材料的掺氮种类和含量及其超级电容器储能应用[J]. 无机材料学报, 2021, 36(7): 766-772. |
[5] | 刘芳芳, 传秀云, 杨扬, 李爱军. 氮/硫共掺杂对纤水镁石模板碳纳米管电化学性能的影响[J]. 无机材料学报, 2021, 36(7): 711-717. |
[6] | 王义良, 艾云龙, 杨书伟, 梁炳亮, 郑振环, 欧阳晟, 何文, 陈卫华, 刘长虹, 张建军, 刘智勇. M3O4(M=FeCoCrMnMg)高熵氧化物粉体的简易制备及超电容性能研究[J]. 无机材料学报, 2021, 36(4): 425-430. |
[7] | 李泽晖,谭美娟,郑元昊,骆雨阳,经求是,蒋靖坤,李明杰. 导电金属有机骨架材料在超级电容器中的应用[J]. 无机材料学报, 2020, 35(7): 769-780. |
[8] | 陈钧,马培华,张诚,劳伦·鲁尔曼,吕耀康. 新型多功能无机/有机复合薄膜的制备及电化学性能研究[J]. 无机材料学报, 2020, 35(2): 217-223. |
[9] | 费明婕, 张任平, 朱归胜, 俞兆喆, 颜东亮. 磷酸根掺杂MnFe2O4及其赝电容特性[J]. 无机材料学报, 2020, 35(10): 1137-1141. |
[10] | 马亚楠, 刘宇飞, 余晨旭, 张传坤, 罗时军, 高义华. 不同横向尺寸单层Ti3C2Tx纳米片的制备及其电化学性能研究[J]. 无机材料学报, 2020, 35(1): 93-98. |
[11] | 李腾飞, 黄璐君, 闫旭东, 刘庆雷, 顾佳俊. 碳化钛/椴木多孔碳复合材料用于超级电容器性能的研究[J]. 无机材料学报, 2020, 35(1): 126-130. |
[12] | 张天宇, 崔聪, 程仁飞, 胡敏敏, 王晓辉. 同步氨化/碳化法制备MXene/C平面多孔复合电极[J]. 无机材料学报, 2020, 35(1): 112-118. |
[13] | 许伟佳, 邱大平, 刘诗强, 李敏, 杨儒. 用于高性能超级电容器电极的栓皮栎基多孔活性炭的制备[J]. 无机材料学报, 2019, 34(6): 625-632. |
[14] | 刘伟, 郑凯, 王东红, 雷忆三, 范怀林. Co3O4纳米线阵列@活性炭纤维复合材料的水热合成及电化学应用[J]. 无机材料学报, 2019, 34(5): 487-492. |
[15] | 王远, 林杰, 常郑, 林天全, 钱猛, 黄富强. 基于三维石墨烯衬底的纳米片状水合氧化钌:电化学沉积制备以及柔性超级电容器储能应用[J]. 无机材料学报, 2019, 34(4): 455-460. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||