[1] |
Shi J L, Li B S, Lu Z L, et al. Correlation between microstructure, phase transformation during fracture and the mechanical properties of Y-TZP Ceramics. Journal of the European Ceramic Society, 1996, 16(7): 795-798.
|
[2] |
Jansen S R, Winnubst A J A, He Y J, et al. Effects of grain size and ceria addition on ageing behaviour and tribological properties of Y-TZP ceramics. Journal of the European Ceramic Society, 1998, 18(5): 557-563.
|
[3] |
Tseng Wenjea J, Taniguchi Masahiko, Yamada Toshiyuki. Transformation strengthening of as-fired zirconia ceramics. Ceramics International, 1999, 25: 545-550.
|
[4] |
Vanmeensel K, Laptev A, Van der Biest O, et al. The influence of percolation during pulsed electric current sintering of ZrO2–TiN powder compacts with varying TiN content. Acta Materialia, 2007, 55(5):1801–1811.
|
[5] |
Bonny K, De Baets P, Vleugels J, et al. Influence of secondary electro-conductive phases on the electrical discharge machinability and frictional behavior of ZrO2-based ceramic composites. Journal of Materials Processing Technology, 2008, 208(1/2/3): 423-430.
|
[6] |
Lauwers B, Brans K, Liu W, et al. Influence of the type and grain size of the electro-conductive phase on the Wire-EDM performance of ZrO2 ceramic composites. CIRP Annals - Manufacturing Technology, 2008, 57(1): 191-194.
|
[7] |
王光国. 氮化钛对钇安定化氧化锆性能与组织之影响. 台湾高雄: 国立高雄应用科技大学硕士论文, 2005.
|
[8] |
Puertas I, Luis C J. A study on the electrical discharge machining of conductive ceramics. Journal of Materials Processing Technology, 2004, 153–154:1033-1038.
|
[9] |
Perez Delgado Y, Bonny K, De Baets P, et al. Impact of wire-EDM on dry sliding friction and wear of WC-based and ZrO2-based composites. Wear, 2011, 271(9/10):1951-1961.
|
[10] |
Lauwers B, Kruth J P, Liu W, et al. Investigation of material removal mechanisms in EDM of composite ceramic materials. Journal of Materials ProcessingTechnology, 2004, 149(1/2/3): 347-352.
|
[11] |
Alfonso Bravo-Leon, Yuichiro Morikawa, Masanori Kawahara, et al. Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content. Acta Materialia, 2002, 50(18): 4555-4562.
|
[12] |
Shibata Kenro, Sato Rikiya, Yoshinaka Masaru, et al. Electrical and mechanical properties of ZrO2(2Y)/TiN composites and laminates made from these materials. Journal of Materials Science, 1997, 32(3): 583-587.
|
[13] |
Ran Songlin, Gao Lian. Mechanical properties and microstructure of TiN/TZP nanocomposites. Materials Science and Engineering A, 2007, 447(1/2): 83-86.
|
[14] |
Jef Vleugels, Omer Van der Biest. Development and characterization of Y2O3-Stabilized ZrO2 (Y-TZP) Composites with TiB2, TiN, TiC, and TiC0.5N0.5. Journal of the American Ceramic Society, 1999, 82(10): 2717-2720.
|
[15] |
Bonny K, De Baets P, Ost W, et al. Influence of secondary phases on the tribological response of electro-discharge machined zirconia- based composites against WC-Co cemented carbide. Wear, 2009, 267(12): 2157-2166.
|
[16] |
Lopez-Esteban S, Gutierrez-Gonzalez C F, Mata-Osoro G, et al. Electrical discharge machining of ceramic/semiconductor/metal nanocomposites. Scripta Materialia, 2010, 63(2): 219-222.
|