[1] |
Schüth F. Non-siliceous mesostructured and mesoporous materials. Chem. Mater. , 2001, 13(10): 3184-3195.
|
[2] |
Cao J M, Feng J, Deng S G, et al. Microwave-assisted solid-state synthesis of hydroxyapatite nanorods at room temperature. Mater. Lett., 2005, 40(23): 6311-6313.
|
[3] |
Yang P D, Zhao D Y, Margolese D I, et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline framework. Nature,1998, 396(6707): 152-155.
|
[4] |
Pan C L, Yuan S, Zhang W X. A neutral templating route to mesoporous titanium phosphate molecular sieves with enhanced thermal stability. Appl. Catal. A: General, 2006, 312: 186-193.
|
[5] |
Yu J, Wang A J, Tan J, et al. Synthesis of novel nanotubular mesoporous nickel phosphates with high performance in epoxidation. J. Mater. Chem. , 2008, 18(30): 3601-3607.
|
[6] |
Choi J Y, Kim J, Jhung S H, et al. Microwave synthesis of a porous metal-organic framework, zinc terephthalate MOF-5. Bull. Korean Chem. Soc., 2006, 27(10): 1523-1524.
|
[7] |
Park S E, Kim D S, Chang J S, et al. Synthesis of MCM-41 using microwave heating with ethylene glycol. Catal. Today, 1998, 44(1-4): 301-308.
|
[8] |
Wu C G, Bein T. Microwave synthesis of molecular sieve MCM-41. Chem. Commun., 1996, 8: 925-926.
|
[9] |
Fantini M C A, Matos J R, Cides da Silva L C, et al. Ordered mesoporous silica: microwave synthesis. Mater. Sci. Eng. B, 2004, 112(2/3): 106-110.
|
[10] |
Bandyopadhyay M, Gies H. Synthesis of MCM-48 by microwave- hydrothermal process. C. R. Chim. , 2005, 8(3/4): 621-626.
|
[11] |
Newalkar B L, Komarneni S, Katsuki H. Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave– hydrothermal process. Chem. Commun. , 2000, 23: 2389-2390.
|
[12] |
Hwang Y K, Chang J S, Kwon Y U, et al. Microwave synthesis of cubic mesoporous silica SBA-16. Microporous Mesoporous Mater. , 2004, 68(1/2/3): 21-27.
|
[13] |
Wang H W, Kuo C H, Lin H C, et al. Rapid formation of active mesoporous TiO2 photocatalysts via micelle in a microwave hydrothermal process. J. Am. Ceram. Soc. , 2006, 89(11): 3388-3392.
|
[14] |
Zawadzki M. Microwave-assisted synthesis and characterization of ultrafine neodymium oxide particles. J. Alloys Compd. , 2008, 451(1/2): 297-300.
|
[15] |
Deshmane A C, Jasinski B J, Carreon A M. Microwave-assisted synthesis of nanocrystalline mesoporous gallium oxide. Microporous Mesoporous Mater. , 2010, 130(1/2/3): 97-102.
|
[16] |
王业红, 谭 涓, 刘 靖, 等(WANG Ye-Hong, et al), 萃取法脱除介孔磷酸镍模板剂的研究. 化学学报(Acta Chim. Sinica), 2010, 68(23): 2471-2476.
|
[17] |
Jhung S H, Yoon J W, Hwang Y K, et al. Morphology control of the nanoporous nickel phosphate VSB-5 from large crystals to nanocrystals. Microporous Mesoporous Mater. , 2006, 89(1/2/3): 9-15.
|
[18] |
牟群英, 李贤军. 微波加热技术的应用与研究进展. 物理学和高新技术, 2004, 33(6): 438-442.
|
[19] |
Bhaumik A, Inagaki S. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc. , 2001, 123(4): 691-696.
|