[1] Scott J F. Applications of modern ferroelectrics. Science, 2007, 315(5814): 954-959.[2] Kimura T, Yoshimoto T, lida N, et al. Mechanism of grain orientation during hot-pressing of bismuth titanate. J. Am. Ceram. Soc., 1989, 72(1): 85-89.[3] Kingon A. Device physics: memories are made of…. Nature, 1999, 401(6754): 658-659. [4] Hervoches C H, Lightfoot P. A variable-temperature powder neutron diffraction study of ferroelectric Bi4Ti3O12. Chem. Mater., 1999, 11(11): 3359-3364.[5] Hou J, Kumar R V, Qu Y, et al. Controlled synthesis of photoluminescent Bi4Ti3O12 nanoparticles from metal-organic polymeric precursor. J. Nanopart Res., 2010, 12(2): 563-571.[6] Cai M Q, Yin Z, Zhang M S, et al. Electronic structure of the ferroelectric-layered perovskite bismuth titanate by ab initio calculation within density functional theory. Chem. Phys. Lett., 2004, 399(1/2/3): 89-93.[7] Cai M Q, Yin Z, Zhang M S, et al. First-principles study of ferroelectric and nonlinear optical property in bismuth titanate. Chem. Phys. Lett., 2005, 401(4/5/6): 405-409.[8] Hashimoto T, Moriwake H. Oxygen vacancy formation energy and its effect on spontaneous polarization in Bi4Ti3O12: a first- principles theoretical study. Phys. Rev. B, 2008, 78(9): 092106-1-4.[9] Sani A, Hanfland M, Levy D. The equation of state of PbTiO3 up to 37 GPa: a synchrotron X-ray powder diffraction study. J. Phys.: Condens. Matter., 2002, 14(44): 10601-10604.[10] Kreisel J, Bouvier P, Maglione M, et al. High-pressure Raman investigation of the Pb-free relaxor BaTi0.65Zr0.35O3. Phys. Rev. B, 2004, 69(9): 092104-1-4.[11] Sepliarsky M, Asthagiri A, Phillpot S R, et al. Atomic-level simulation of ferroelectricity in oxide materials. Solid State and Materials Science, 2005, 9(3): 107-113.[12] Tinte S, Stachiotti M G, Sepliarsky M, et al. Atomistic modelling of BaTiO3 based on first-principles calculations. J. Phys.: Condens. Matter, 1999, 11(48): 9679-9690.[13] Tinte S, Stachiotti M G, Phillpot S R, et al. Ferroelectric properties of BaxSr1-xTiO3 solid solutions obtained by molecular dynamics simulation. J. Phys.: Condens. Matter, 2004, 16(20): 3495-3506.[14] Gale J D. GULP: a computer program for the symmetry-adapted simulation of solids. J. Chem. Soc., Faraday Trans., 1997, 93(4): 629-637.[15] Smith W, Yong C W, Rodger P M. DL_POLY: application to molecular simulation. Molecular Simulation, 2002, 28(5): 385-471.[16] Pirovano C, Saiful Islam M, Vannier R N, et al. Modelling the crystal structures of aurivillius phases. Solid State Ionics, 2001, 140(1/2): 115-123.[17] Snedden A, Lightfoot P, Dinges T, et al. Defect and dopant properties of the aurivillius phase Bi4Ti3O12. Journal of Solid State Chemistry, 2004, 177(10): 3660-3665.[18] Cummins S E, Cross L E. Electrical and optical properties of ferroelectric Bi4Ti3012 single crystals. J. Appl. Phys., 1968, 39(5): 2268-2274.[19] Noguchi Y,-Goto T, Miyayama M. Ferroelectric distortion and electronic structure in Bi4Ti3O12. J. Electroceram., 2008, 21(1-4): 49-54.[20] Kourouklis G A, Jayaraman A, Van Uitert L G. Pressure dependence of the Raman-active modes in Bi4Ti3O12. Materials Letters, 1987, 5(3): 116-119. [21] Maczka M, Paraguassu W, Souza Filho A G, et al. Phonon- instability-driven phase transitions in ferroelectric Bi2WO6:Eu3+: high-pressure Raman and photoluminescence studies. Phys. Rev. B, 2008, 77(9): 094137-1-9.[22] Maczka M, Freire P T C, Luz-Lima C, et al. Pressure-induced phase transitions in ferroelectric Bi2MoO6—a Raman scattering study. J. Phys.: Condens. Matter, 2010, 22(1): 015901-1-6. |