[1] Nishi Y. Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources. 2001, 100(1/2): 101–106.[2] Yamada S, Fujiwara M, Kanda M. Synthesis and properties of LiNiO2 as cathode material for secondary batteries. Journal of Power Sources, 1995, 54(2): 209–213.[3] Gu L, Zhu C, Li H, et al. Direct observation of lithium staging in partially delithiated LiFePO4 at atomic resolution. Journal of the American Chemical Society, 2011, 133(13): 4661–4663.[4] Lin Y K, Lu C H. Preparation and electrochemical properties of layer-structured LiNi1/3Co1/3Mn1/3?yAlyO2. Journal of Power Sources, 2009, 189(1): 353–358.[5] Kim D K, Muralidharan P, Lee H W, et al. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Letters, 2008, 8(11): 3948–3952.[6] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414: 359–367.[7] Bhat M, Chakravarthy B, Ramakrishnan P, et al. Microwave synthesis of electrode materials for lithium batteries. Bulletin of Materials Science, 2000, 23(6): 461–466.[8] Yamada A, Tanaka M. Jahn-Teller structural phase transition around 280 K in LiMn2O4. Materials Research Bulletin, 1995, 30(6): 715–721.[9] Lee S W, Kim K S, Lee K L, et al. Electrochemical characteristics of metal oxide-coated lithium manganese oxide (spinel type): Part II. In the range of 3.0–4.4 V. Journal of Power Sources, 2004, 130: 233–240.[10] Lee H W, Muralidharan P, Ruffo R, et al. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Letters, 2010, 10(10): 3852–3856.[11] Fu Y P, Su Y H, Lin C H, et al. Comparison of the microwave-induced combustion and solid-state reaction for the synthesis of LiMn2O4 powder and their electrochemical properties. Ceramics International, 2009, 35(8): 3463–3468.[12] Arillo M A, Cuello G, López M L, et al. Structural characterisation and physical properties of LiMMnO4 (M=Cr, Ti) spinels. Solid State Sciences, 2005, 7(1): 25–32.[13] Li C, Zhang H P, Fu L J, et al. Cathode materials modified by surface coating for lithium ion batteries. Electrochimica Acta, 2006, 51(19): 3872–3883.[14] Li Y J, Kong L, Xi X M, et al. Hydrothermal Preparation and Characterization of LiMn2O4 for Li-ion Battery Application. Proceedings of COM 2012. Niagara Falls, Ontario, Canada, 2012.[15] Zhou W J, Bao S J, He B L, et al. Synthesis and electrochemical properties of LiAl0.05Mn1.95O4 by the ultrasonic assisted rheological phase method. Electrochimica Acta, 2006, 51(22): 4701–4708.[16] Liang Y Y, Bao S J, Li H L. A series of spinel phase cathode materials prepared by a simple hydrothermal process for rechargeable lithium batteries. Journal of Solid State Chemistry, 2006, 179(7): 2133–2140.[17] Hung F Y, Lui T S, Liao H C. A study of nano-sized surface coating on LiMn2O4 materials. Applied Surface Science. 2007, 253(18): 7443–7448.[18] Sun Y K, Yoon C S, Kim C K, et al. Degradation mechanism of spinel LiAl0.2Mn1.8O4 cathode materials on high temperature cycling. Journal of Materials Chemistry, 2001, 11(10): 2519–2522.[19] Hjelm A K, Lindbergh G. Experimental and theoretical analysis of LiMn2O4 cathodes for use in rechargeable lithium batteries by electrochemical impedance spectroscopy (EIS). Electrochimica Acta, 2002, 47(11): 1747–1759. |