无机材料学报 ›› 2012, Vol. 27 ›› Issue (12): 1283-1288.DOI: 10.3724/SP.J.1077.2012.12142 CSTR: 32189.14.SP.J.1077.2012.12142

• 研究论文 • 上一篇    下一篇

Bi掺杂纳米TiO2光催化甘油水溶液制氢性能研究

桑换新1,2, 田 野2, 王希涛1, 陶 磊2   

  1. (1. 天津大学 化工学院, 天津300072; 2. 天津市环境保护科学研究院, 天津300191)
  • 收稿日期:2012-03-06 修回日期:2012-06-15 出版日期:2012-12-20 网络出版日期:2012-11-19
  • 作者简介:桑换新(1987–), 女, 硕士. E-mail: sanghuanxinshx@126.com
  • 基金资助:

    国家自然科学基金(21276190, 20806059)

Photocatalytic H2 Evolution from Glycerol Solution over Bi3+-doped TiO2 Nanoparticles

SANG Huan-Xin1,2, TIAN Ye2, WANG Xi-Tao1, TAO Lei2   

  1. (1. College of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Tianjin Academy of Environmental Sciences, Tianjin 300191, China)
  • Received:2012-03-06 Revised:2012-06-15 Published:2012-12-20 Online:2012-11-19
  • About author:SANG Huan-Xin. E-mail: sanghuanxinshx@126.com
  • Supported by:

    National Natural Science Foundation of China (21276190, 20806059)

摘要: 采用溶胶–凝胶法制备了TiO2和Bi掺杂的TiO2纳米颗粒, 用N2吸附-脱附、SEM、XRD、FT-Raman、UV-Vis DRS对光催化材料的孔结构、表面构造、能带结构、吸光特性进行了表征, 并考查了其光催化甘油水溶液制氢反应的活性. 结果表明: Bi掺杂后的TiO2为介孔结构的锐钛矿晶型纳米颗粒, 其分散度明显增加, 晶粒变小, 比表面积增大; Bi掺杂使得TiO2禁带内形成杂质能级, 降低了禁带能量, 增加了光生电子和空穴的分离效率, 有利于将TiO2的吸光带边界扩展至可见光区; Bi掺杂的TiO2样品表现出了远高于纯TiO2的光催化甘油水溶液制氢性能, 2mol%Bi掺杂的样品在紫外光和模拟太阳光辐射下表现出了最高产氢活性, 其速率分别为3534.8 μmol/(h·gcat)和  455.7 μmol/(h·gcat).

关键词: Bi掺杂TiO2纳米颗粒, 光催化, 甘油水溶液, 制氢

Abstract: TiO2 and Bi3+-doped TiO2 semiconductors were prepared by using Sol-Gel method. Their pore size distribution, crystal structure, surface composition, photo absorption properties and photocatalytic performance for H2 evolution from glycerol solution were investigated by techniques of N2 adsorption-desorption, XRD, FT-Raman, SEM, UV-Vis DRS and photocatalytic reaction. The results show that Bi3+-doped TiO2 appears anatase phase nanoparticles with mesoporous structure and has a much smaller crystallite size and much higher BET surface area than bare TiO2. These samples exhibit a visible-light absorption capability much higher than bare TiO2, which mainly originates from the doping process with the formation of new energy level of Bi3+ between conduction band and valence band of TiO2 to reduce the energy gap and the electron–hole recombination rate. The Bi3+-doped TiO2 samples display improved photocatalytic H2 production from glycerol solution, and 2%Bi-doped TiO2 shows a maximum H2 production rate of 3534.8 μmol/(h·gcat) under UV irradiation and 455.7 μmol/(h·gcat) under simulated-solar irradiation, respectively.

Key words: Bi3+-dope TiO2 nanoparticle, photocatalysis, glycerol solution, H2 production

中图分类号: