无机材料学报

• • 上一篇    下一篇

Ba0.57Sr0.39Ca0.03Ti1.01NbxO3基正温度系数陶瓷材料制备及电学性能研究

周文昊1,2, 欧阳琪1, 马名生1,2, 陆毅青1, 刘志甫1,2   

  1. 1.中国科学院 上海硅酸盐研究所,无机功能材料与器件重点实验室,上海 201899;
    2.中国科学院大学 材料科学与光电技术学院,北京 100049
  • 收稿日期:2025-11-03 修回日期:2025-11-29
  • 通讯作者: 刘志甫, 研究员. E-mail: liuzf@mail.sic.ac.cn; 欧阳琪, 高级工程师. E-mail: ouyangqi@mail.sic.ac.cn
  • 作者简介:周文昊(2000-), 男, 硕士研究生. E-mail: zhouwenhao221@mails.ucas.ac.cn

Synthesis and Electrical Characteristics of Ba0.57Sr0.39Ca0.03Ti1.01NbxO3 Positive Temperature Coefficient Ceramics

ZHOU Wenhao1,2, OUYANG Qi1, MA Mingsheng1,2, LU Yiqing1, LIU Zhifu1,2   

  1. 1. Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
    2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-11-03 Revised:2025-11-29
  • Contact: LIU Zhifu, professor. E-mail: liuzf@mail.sic.ac.cn; OUYANG Qi, senior engineer. E-mail: ouyangqi@mail.sic.ac.cn
  • About author:ZHOU Wenhao (2000-), male, Master candidate. E-mail: zhouwenhao221@mails.ucas.ac.cn

摘要: 低居里温度钛酸钡基正温度系数(Positive temperature coefficient, PTC)陶瓷因具有低温环境下电阻率随温度急剧变化的特性,能够满足精密测温传感组件在低温领域的使用需求,在深空探测等领域具有广泛的应用前景。但是,低居里温度钛酸钡基PTC材料难以兼具小的低温电阻率与高的升阻比。本研究旨在通过元素掺杂优化低居里温度钛酸钡基PTC陶瓷的性能,解决低温电阻率偏高与升阻比不足的矛盾。采用固相合成法制备了Ba0.57Sr0.39Ca0.03Ti1.01NbxO3低居里温度钛酸钡基PTC热敏陶瓷材料。通过X射线分析衍射(XRD)分析,扫描电子显微镜(SEM)分析和电性能测试研究了陶瓷结构与性能的关系。不同烧结温度样品的电性能测试证明1375 ℃是最优烧结温度,X射线衍射分析确定了样品具有单一晶相,扫描电子显微镜分析证实了Nb对晶粒的细化作用。对不同Nb掺杂含量的样品进行电阻率-温度测试,发现在x = 0.0025、0.0030时,材料的低温电阻率下降至103 Ω·cm,升阻比达到6,具有优良的PTC效应。介电常数-温度谱测试进一步确定了材料的居里温度为0 ℃,并发现介电常数随Nb掺杂含量的增加呈现波动式上升。交流复阻抗谱测试表明材料PTC效应的产生与晶界效应有关。通过掺入Sr使得材料的居里温度降低至0 ℃,使用Nb作为施主掺杂元素降低了材料低温电阻率,向材料体系中引入Mn提高了材料的升阻比。该研究成功制备了居里温度低、低温电阻率小且升阻比高的钛酸钡基PTC陶瓷,为航天领域的低温高精度温度传感组件研发提供了新思路。

关键词: 钛酸钡, 低居里温度, PTC热敏陶瓷

Abstract: Low Curie temperature Barium titanate-based positive temperature coefficient (PTC) ceramics, which exhibit significant resistivity changes with temperature in low temperature environments, fulfill the demand for precise temperature sensor components and hold broad application potential in deep space exploration. However, achieving both low low-temperature resistivity and high PTC intensity remains challenging in low Curie temperature barium titanate-based PTC materials. This study focuses on optimizing the performance of low-Curie-temperature barium titanate-based PTC ceramics through element doping, addressing the critical contradiction between elevated low-temperature resistivity and insufficient PTC intensity. A low Curie temperature barium titanate-based PTC thermistor ceramic material Ba0.57Sr0.39Ca0.03Ti1.01NbxO3 was prepared via solid-state synthesis. X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and electric tests were implemented to clarify the mechanism of structures and properties. Electrical property tests on samples sintered at different temperatures confirmed 1375 ℃ as the optimal sintering temperature. XRD analysis verified single crystalline phase composition. SEM images confirmed niobium’s role in grain refinement. Resistivity-temperature tests on samples with varying Nb doping content showed that at x = 0.0025 and 0.0030, the low-temperature resistivity dropped to 103 Ω·cm with a PTC intensity of 6, demonstrating excellent PTC characteristics. Dielectric constant-temperature spectra further confirmed the Curie temperature at 0 ℃ and the dielectric constant showed an oscillatory increase with the rise of Nb doping content. AC complex impedance spectra revealed that the PTC effect originates from grain boundary effects. Strontium doping reduced the Curie temperature to 0 ℃, while niobium as a donor dopant decreased the low-temperature resistivity. Manganese was introduced to enhance the PTC intensity. This study pioneered the fabrication of barium titanate-based PTC ceramics exhibiting low Curie temperatures, exceptionally small low-temperature resistivity, and high PTC intensity, establishing a paradigm shift for developing cryogenic temperature sensors critical to aerospace thermal management systems.

Key words: barium taitanate, low Curie temperature, PTC thermistor ceramics

中图分类号: