无机材料学报

• • 上一篇    下一篇

利用应力调控二维新型SixCy的电子性质

黄奎碎, 王珂馨, 罗万豪, 李飞, 葛一瑶, 高艺璇, 陈克新   

  1. 北京科技大学 新金属材料全国重点实验室, 北京 100083
  • 收稿日期:2025-10-26 修回日期:2026-01-15
  • 作者简介:黄奎碎(2001–), 女, 硕士研究生. E-mail: m202511244@xs.ustb.edu.cn
  • 基金资助:
    国家自然科学基金(52572063,52350322);中央高校基本科研业务费专项资金(FRF-TP-24-055A,FRF-IDRY-24-007);新金属材料全国重点实验室(41601124,41601126)

Regulating Electronic Properties of Novel Two-dimensional SixCy under External Strain

HUANG Kuisui, WANG Kexin, LUO Wanhao, LI Fei, GE Yiyao, GAO Yixuan, CHEN Kexin   

  1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2025-10-26 Revised:2026-01-15
  • About author:HUANG Kuisui (2001–), female, Master candidate. E-mail: m202511244@xs.ustb.edu.cn
  • Supported by:
    National Natural Science Foundation of China (52572063, 52350322); Fundamental Research Funds for the Central Universities (FRF-TP-24-055A, FRF-IDRY-24-007); State Key Lab for Advanced Metals and Materials (41601124, 41601126)

摘要: 二维SixCy材料因其独特的结构可调性与优异的物理化学性能成为材料科学领域的研究热点。其中,二维Si2C6、Si6C12、Si12C20被理论预言是一类新型拓扑绝缘体材料,Si2C6与Si12C20是具有狄拉克锥的半金属材料,而Si6C12是具有本征大能隙的高阶拓扑绝缘体材料。目前,应力对二维SixCy (Si2C6、Si6C12、Si12C20)材料电子性质的调控作用尚待研究。本文采用基于密度泛函理论(Density Functional Theory, DFT)的第一性原理方法探究应变对二维SixCy (Si2C6、Si6C12、Si12C20)材料电子性质的调控规律。计算结果表明,在双轴拉伸断裂应变附近,Si2C6与Si12C20的狄拉克锥仍保持完整,但较小的双轴压缩应变或单轴应变会破坏Si2C6与Si12C20狄拉克点处的简并性,使得Si2C6和Si12C20从拓扑绝缘体转变为平庸的直接带隙半导体。此外,双轴应变对高阶拓扑绝缘体Si6C12的带隙具有调控作用,在0~4%的压缩应变下,Si6C12的带隙随着压缩应变的增大而减小,在0~10%的拉伸应变下,带隙随着拉伸应变的增大而增大。Si6C12的带隙对应变变化较为敏感,有望应用在半导体器件中。在断裂应变附近,Si6C12的价带与导带交叉,体系表现为金属性。在单轴应变下,拉伸或压缩应变会导致Si6C12在Γ点处的能带发生退简并。此外,通过经典分子动力学(Molecular Dynamics, MD)模拟探究Si2C6、Si6C12、Si12C20的力学性质,发现这类材料的断裂强度随着C/Si比值的减小而降低。Si2C6、Si6C12、Si12C20的断裂应变在0.32~0.37之间,高于单晶石墨烯和无缺陷六方氮化硼,具有良好的延展性。

关键词: 第一性原理计算, 二维SixCy材料, 应力调控, 电子性质, 力学性质

Abstract: Two-dimensional (2D) SixCy materials have become a research hotspot in materials science due to their unique structural tunability and outstanding physicochemical properties. Among these, 2D Si2C6, Si6C12 and Si12C20 are theoretically predicted to represent a novel class of topological insulator materials. Si2C6 and Si12C20 are semimetallic materials exhibiting Dirac cones, while Si6C12 is a high-order topological insulator with an intrinsic large bandgap. Currently, the regulation of electronic properties in two-dimensional SixCy (Si2C6, Si6C12 and Si12C20) materials by stress remains to be investigated. In this study, first-principles density functional theory (DFT) was employed to investigate the strain-induced electronic properties of 2D SixCy (Si2C6, Si6C12 and Si12C20) materials. Computational results reveal that near the biaxial tensile fracture strain, the Dirac cones of Si2C6 and Si12C20 remain intact. However, even small biaxial compressive strains or uniaxial strains disrupt the degeneracy at the Dirac points of Si2C6 and Si12C20, transforming them from topological insulators into trivial direct-bandgap semiconductors. Furthermore, biaxial strain modulates bandgap of the higher-order topological insulator Si6C12. Under 0-4% compressive strain, the bandgap decreases with increasing compressive strain. Under 0-10% tensile strain, the bandgap increases with increasing biaxial tensile strain. The bandgap of Si6C12 exhibits significant sensitivity to strain variations, making it a promising candidate for semiconductor devices. Near fracture strain, the valence and conduction bands of Si6C12 intersect, resulting in metallic behavior. Under uniaxial strain, tensile or compressive deformation induces band delocalization at the Γ point. Additionally, classical molecular dynamics (MD) simulations were employed to investigate the mechanical properties of Si2C6, Si6C12, and Si12C20. Results indicate that the fracture strengths of these materials decrease as the C/Si ratio reduces. The fracture strains of Si2C6, Si6C12, and Si12C20 range from 0.32 to 0.37, exceeding those of single-crystal graphene and defect-free hexagonal boron nitride, and demonstrating excellent ductility.

Key words: first-principles calculation, two-dimensional SixCy material, strain regulation, electronic property, mechanical property

中图分类号: