无机材料学报

• •    

Bi掺杂InSe晶体生长及性能研究

徐浩1, 顾海涛1, 吴鸿辉1, 岳晓飞1, 林思琪1, 金敏1,2   

  1. 1.上海电机学院 材料学院,上海 201306;
    2.乌镇实验室,桐乡 314500
  • 收稿日期:2025-07-13 修回日期:2025-08-28
  • 通讯作者: 金 敏, 教授. E-mail: jmaish@aliyun.com
  • 作者简介:徐 浩(1998-), 男, 硕士研究生. E-mail: xnddream@126.com
  • 基金资助:
    中国载人航天工程空间应用系统项目(KJZ-YY-NCL405); 国家自然科学基金(52371193, 52272006); 上海市晨光计划(22CG281); 上海市优秀学术带头人(23XD1421200); 上海启明星计划(23QA1403900); 上海市东方学者计划(TP2022122); 上海市东方英才项目(QNWS2023); 浙江省自然科学基金(LD25E020001)

Crystal Growth and Properties Study of Bi doped InSe

XU Hao1, GU Haitao1, WU Honghui1, YUE Xiaofei1, LIN Siqi1, JIN Min1,2   

  1. 1. College of Materials, Shanghai Dianji University, Shanghai 201306, China;
    2. Wuzhen Laboratory, Tongxiang 314500, China
  • Received:2025-07-13 Revised:2025-08-28
  • Contact: JIN Min, professor. E-mail: jmaish@aliyun.com
  • About author:XU Hao (1998-), male, Master candidate. E-mail: xnddream@126.com
  • Supported by:
    Space Application System of China Manned Space Program (KJZ-YY-NCL405); National Natural Science Foundation of China (52371193, 52272006); Chenguang Program supported by the Shanghai Education Development Foundation & Shanghai Municipal Education Commission (22CG281); the Shanghai Academic Research Leader (23XD1421200); Shanghai Rising-Star Program (23QA1403900); Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions (TP2022122); Shanghai Oriental Talented Youth Project (QNWS2023); Zhejiang Provincial Natural Science Foundation of China (LD25E020001)

摘要: 硒化铟(InSe)作为一种典型的层状III-VI族半导体,因其高电子迁移率、可调控的带隙以及卓越的塑性变形能力而备受关注,成为下一代电子、光电子以及柔性器件的候选材料之一。近年来,本征InSe晶体的可控制备技术已趋于成熟,但针对掺杂InSe晶体制备的系统研究仍相对缺乏。实现高质量、成分可控的掺杂InSe晶体的稳定合成,已成为推动InSe走向实际应用的关键驱动因素。本研究首先采用布里奇曼法生长出本征InSe晶体,随后在原料合成阶段引入Bi元素,成功制备出高质量的Bi掺杂InSe晶体。光学显微镜和扫描电子显微镜测试表明,所得Bi掺杂InSe晶体表面光滑、单晶特性优异。拉曼光谱与X射线衍射分析进一步证实,掺杂前后InSe晶体的物相结构保持一致,均为ε相。化学腐蚀实验证实,引入的Bi原子能够与晶体中的位错核心发生相互作用,有效抑制其运动,因此显著降低InSe晶体的位错密度。电学测试结果表明,Bi元素掺杂在高温区可以明显提升InSe晶体的载流子浓度和迁移率,主要归因于额外载流子的引入,以及位错密度降低而减弱的载流子散射效应。因此,我们成功制备出Bi元素掺杂的InSe晶体,并证实其具有优于本征InSe的电学性能。本工作为优化InSe晶体特性、推动其在未来器件中的集成应用提供了理论依据与实验指导。

关键词: InSe晶体, Bi元素掺杂, 布里奇曼法, 位错

Abstract: Indium selenide (InSe), a typical layered III-VI semiconductor, has attracted intense interest owing to its high electron mobility, tunable bandgap, and exceptional plastic deformation capability, making it a promising candidate for next-generation electronic, optoelectronic, and flexible devices. Recently, the controlled growth of intrinsic InSe crystals has been well developed, whereas systematic investigations on the preparation of doped InSe crystals remain relatively scarce. The reliable synthesis of high-quality, composition-controlled doped InSe crystals plays a key driver that urgently propelling InSe towards practical applications. In this study, intrinsic InSe crystals were first grown using the Bridgman method, and high-quality Bi-doped InSe crystals were further prepared through introducing Bi in the source material synthesis stage. Optical microscopy and scanning electron microscopy measurements indicate that the as-grown Bi-doped InSe crystals exhibit smooth surface and excellent single-crystalline characteristic. Raman spectroscopy and X-ray diffraction analyses further demonstrate that the phase structure of InSe remains consistent after Bi doping, with both intrinsic and Bi-doped crystals exhibiting the ε-InSe phase. Chemical etching experiments reveal that the introduced Bi atoms can interact with the dislocation cores within crystal, effectively suppressing their motion and resulting in a significant reduction in dislocation density. Electrical measurements show that the Bi doping markedly increases the carrier concentration and mobility of InSe crystal in the high-temperature section, which is primarily attributed to the introduction of additional free carriers, as well as the suppression of carrier scattering resulting from the reduced dislocation density. Consequently, we have successfully fabricated Bi-doped InSe crystal and verified its superior performance over the intrinsic InSe. This work provides theoretical insights and experimental guidance for optimizing the properties of InSe crystals and advancing its integration application in future devices.

Key words: InSe crystal, Bi elemental doping, Bridgman method, dislocations

中图分类号: