[1] |
ZHOU G J, SU B B, HUANG J L, et al. Broad-band emission in metal halide perovskites: mechanism, materials, and applications. Materials Science and Engineering: R: Reports, 2020, 141: 100548.
DOI
URL
|
[2] |
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692-3696.
DOI
URL
|
[3] |
KOVALENKO M V, PROTESESCU L, BODNARCHUK M I, et al. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358(6364): 745-750.
DOI
PMID
|
[4] |
ZHANG Q, SU R, DU W, et al. Advances in small perovskite- based lasers. Small Methods, 2017, 1(9): 1700163.
DOI
URL
|
[5] |
ZHOU Y, CHEN J, BAKR O M, et al. Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Letters, 2021, 6(2): 739-768.
DOI
URL
|
[6] |
ZHOU C K, LIN H R, HE Q Q, et al. Low dimensional metal halide perovskites and hybrids. Materials Science and Engineering: R: Reports, 2019, 137: 38-65.
DOI
URL
|
[7] |
CHEN Q S, WU J, OUYANG X P, et al. All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561: 88-93.
DOI
URL
|
[8] |
WEBER M J. Inorganic scintillators: today and tomorrow. Journal of Luminescence, 2002, 100(1): 35-45.
DOI
URL
|
[9] |
RABIN O, MANUEL P J, GRIMM J, et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nature Materials, 2006, 5: 118-122.
DOI
PMID
|
[10] |
LI Y, SHAO W Y, OUYANG X P, et al. Scintillation properties of perovskite single crystals. Journal of Physical Chemistry C, 2019, 123(28): 17449-17453.
DOI
|
[11] |
CHENG S, BEITLEROVA A, KUCERKOVA R, et al. Zero- dimensional Cs3Cu2I5 perovskite single crystal as sensitive X-ray and γ-ray scintillator. Physica Status Solidi-Rapid Research Letters, 2020, 14(11): 2000374.
DOI
URL
|
[12] |
STAND L, RUTSTROM D, KOSCHAN M, et al. Crystal growth and scintillation properties of pure and Tl-doped Cs3Cu2I5. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 991: 164963.
DOI
URL
|
[13] |
XU Q, WANG J, ZHANG Q D, et al. Solution-processed lead-free bulk 0D Cs3Cu2I5 single crystal for indirect gamma-ray spectroscopy application. Photonics Research, 2021, 3(9): 351-356.
|
[14] |
TAEHWAN J, KIHYUNG S, SOSHI I, et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Advanced Materials, 2018, 43(30): 1804547.
|
[15] |
YEVGENY R, NIR K, SATYAJIT G, et al. Low-temperature solution-grown CsPbBr3 single crystals and their characterization. Crystal Growth & Design, 2016, 16(10): 5717-5725.
DOI
URL
|
[16] |
DANG Y, JU D, WANG L, et al. Recent progress in the synthesis of hybrid halide perovskite single crystals. CrystEngComm, 2016, 24(18): 4476-4484.
|
[17] |
DONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967-970.
DOI
URL
|
[18] |
姚连增. 晶体生长基础. 合肥: 中国科学技术大学出版社, 1995: 24-57.
|