无机材料学报 ›› 2026, Vol. 41 ›› Issue (1): 45-54.DOI: 10.15541/jim20250218 CSTR: 32189.14.jim20250218

• 研究论文 • 上一篇    下一篇

Fe2AlB2的高温氧化机制及吸波性能研究

马新超1(), 智清1, 李威1, 陈毛1,2(), 王海龙1,2, 张锐1,2, 张帆3, 范冰冰1,2()   

  1. 1.郑州大学 材料科学与工程学院, 郑州 450001
    2.郑州大学 洛阳产业技术研究院, 洛阳 471100
    3.河南省科学院, 郑州 450046
  • 收稿日期:2025-05-20 修回日期:2025-06-30 出版日期:2026-01-20 网络出版日期:2025-07-20
  • 通讯作者: 陈 毛, 副研究员. E-mail: mchen@zzu.edu.cn;
    范冰冰, 教授. E-mail: fanbingbing@zzu.edu.cn
  • 作者简介:马新超(2004-), 男, 本科. E-mail: 2848489094@qq.com
  • 基金资助:
    河南省杰出青年基金(242300421009);河南省重点研发专项(251111232100)

High-temperature Oxidation Mechanism and Electromagnetic Wave Absorption Properties of Fe2AlB2

MA Xinchao1(), ZHI Qing1, LI Wei1, CHEN Mao1,2(), WANG Hailong1,2, ZHANG Rui1,2, ZHANG Fan3, FAN Bingbing1,2()   

  1. 1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
    2. Luoyang Industrial Technology Research Institute, Zhengzhou University, Luoyang 471100, China
    3. Henan Academy of Sciences, Zhengzhou 450046, China
  • Received:2025-05-20 Revised:2025-06-30 Published:2026-01-20 Online:2025-07-20
  • Contact: CHEN Mao, associate professor. E-mail: mchen@zzu.edu.cn;
    FAN Bingbing, professor. E-mail: fanbingbing@zzu.edu.cn
  • About author:MA Xinchao (2004-), male, undergraduate. E-mail: 2848489094@qq.com
  • Supported by:
    Excellent Youth Foundation of Henan Scientific Committee(242300421009);Key Research and Development Projects of Henan Province(251111232100)

摘要: 传统吸波材料在高温条件下易失效, 难以满足极端高温环境的性能需求。Fe2AlB2因其纳米层状结构以及优良的高温稳定性, 在高温吸波领域备受关注。本研究通过湿法球磨-氩气烧结工艺制备了Fe2AlB2粉末, 并系统研究了Fe2AlB2在高温下的氧化机制和吸波性能变化规律。同时, 借助电磁仿真软件对其在7 GHz微波下的吸收过程进行了雷达散射截面模拟。结果表明: Fe2AlB2起始氧化温度为671 ℃, 随着氧化温度的升高, 其表面形成致密Al2O3保护膜, 抗氧化性能显著增强; 当氧化温度超过1000 ℃时, Al2O3膜破裂, 主相转变为Fe2O3、Al4B2O9以及非晶态B2O3; 在300~800 ℃氧化温度范围内, 样品吸波性能随氧化温度升高而逐步提升, 尤其在10 GHz附近, 其介电损耗能力最为突出。当氧化温度升高至900 ℃时, 在频率f = 11.28 GHz下, 样品的反射损耗达到-42.60 dB, 相应的厚度为2.8 mm。Al2O3膜通过诱导“氧化膜-基体”界面极化损耗, 显著提高了介电损耗效率。本研究阐明了Fe2AlB2在不同温度的氧化机制及其对吸波性能的影响规律, 为其在高温吸波环境中的应用提供了理论基础。

关键词: Fe2AlB2, 抗氧化性, 吸波性能, 高温稳定性

Abstract:

Traditional wave-absorbing materials often exhibit performance limitations at high temperatures, which makes it difficult to meet performance demands in extreme high-temperature environments. Fe2AlB2 has garnered significant attention in the field of high-temperature wave absorption due to its nano-layered structure and exceptional high-temperature stability. This study synthesized Fe2AlB2 powder through a wet ball milling process followed by sintering in an argon atmosphere. Investigation was conducted to elucidate the oxidation mechanisms and to assess the evolution of its wave-absorbing properties at elevated temperatures. Additionally, electromagnetic simulation software was utilized to model the radar cross-section associated with its absorption process under 7 GHz microwave irradiation. The results indicate that the onset oxidation temperature of Fe2AlB2 is 671 ℃. As the oxidation temperature increases, a dense Al2O3 protective film forms on its surface, significantly enhancing its oxidation resistance. Beyond 1000 ℃, this Al2O3 film fractures, leading to transformation of the primary phases into Fe2O3, Al4B2O9 and amorphous B2O3. Within the oxidation temperature range of 300-800 ℃, the wave absorption performance of the sample progressively improves with increasing oxidation temperature, exhibiting particularly outstanding dielectric loss capabilities around 10 GHz. At an oxidation temperature of 900 ℃, the sample achieves a reflection loss of -42.60 dB at a frequency of 11.28 GHz, with corresponding a thickness of 2.8 mm. The Al2O3 film significantly enhances dielectric loss efficiency by inducing interfacial polarization loss at the "oxide film-matrix" interface. This study elucidates that oxidation mechanisms of Fe2AlB2 at varying temperatures and examines consequent impacts on wave-absorbing properties, thereby providing a theoretical foundation for its application in high-temperature wave-absorbing environments.

Key words: Fe2AlB2, oxidation resistance, wave-absorbing property, high-temperature stability

中图分类号: