无机材料学报

• 研究论文 •    

Fe2AlB2的高温氧化机制及吸波性能研究

马新超1, 智清1, 李威1, 陈毛1,2, 王海龙1,2, 张锐1,2, 张帆3, 范冰冰1,2, *   

  1. 1.郑州大学 材料科学与工程学院,郑州 450001;
    2.郑州大学 洛阳产业技术研究院,洛阳 471100;
    3.河南省科学院,郑州 450046
  • 收稿日期:2025-05-20 修回日期:2025-06-30
  • 作者简介:马新超(2004-),男,本科生。E-mail:2848489094@qq.com
  • 基金资助:
    河南省杰出青年基金(242300421009); 河南省重点研发专项(251111232100)

High-Temperature Oxidation Mechanism and Electromagnetic Wave Absorption Properties in Fe2AlB2

MA Xinchao1, ZHI Qing1, LI Wei1, CHEN Mao1,2, WANG Hailong1,2, ZHANG Rui1,2, ZHANG Fan3, FAN Bingbing1,2, *   

  1. 1. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
    2. Luoyang Industrial Technology Research Institute, Zhengzhou University, Luoyang 471100, China;
    3. Henan Academy of Sciences, Zhengzhou 450046, China
  • Received:2025-05-20 Revised:2025-06-30
  • About author:MA Xinchao (2004-), male, undergraduate student. E-mail:2848489094@qq.com
  • Supported by:
    Excellent Youth Foundation of He’nan Scientific Committee (242300421009); Key Research and Development Projects of Henan Province (251111232100)

摘要: 传统吸波材料高温条件下易失效,难以满足极端高温环境的性能需求。Fe2AlB2因其纳米层状结构以及优良的高温稳定性,在高温吸波领域备受关注。本研究通过湿法球磨-氩气烧结工艺制备了Fe2AlB2粉末,并系统研究了Fe2AlB2在高温下的氧化机制和吸波性能变化规律。同时,借助电磁仿真软件(CST)对其在7 GHz微波下的吸收过程进行了雷达散射截面(RCS)模拟。结果表明:Fe2AlB2起始氧化温度为671 ℃,随着氧化温度的升高,其表面形成致密Al2O3保护膜,抗氧化性能显著增强;当氧化温度超过1000 ℃,Al2O3膜破裂,主相转变为Fe2O3、Al4B2O9以及非晶态B2O3;在300~800 ℃氧化温度范围,样品吸波性能随氧化温度升高而逐步提升,尤其在10 GHz附近,其介电损耗能力最为突出。当氧化温度升高至900 ℃时,在频率f=11.28 GHz下,样品的反射损耗(RL)达到-42.6 dB,相应的厚度为2.8mm。Al2O3膜通过诱导“氧化膜-基体”界面极化损耗,显著提高了介电损耗效率。本研究阐明了Fe2AlB2在不同温度的氧化机制及其对吸波性能的影响规律,为其在高温吸波环境中的应用提供了理论基础。

关键词: Fe2AlB2, 抗氧化性, 吸波性能, 高温稳定性

Abstract: Traditional wave-absorbing materials often exhibit performance limitations at high temperatures, struggling to meet performance demands in extreme thermal environments. Fe2AlB2 has garnered significant attention in the field of high-temperature wave absorption due to its nano-layered structure and exceptional thermal stability. This study synthesized Fe2AlB2 powder through a wet ball milling process followed by sintering in an argon atmosphere. A systematic investigatigation was conducted to elucidate the oxidation mechanisms and to assess the evolution of its wave-absorbing properties at elevated temperatures. Additionally, CST software was utilized to model the radar cross-section(RCS) associated with its absorption process under 7 GHz microwave irradiation. The results indicate that the onset oxidation temperature of Fe2AlB2 is 671 ℃. As the oxidation temperature increases, a dense Al2O3 protective film forms on its surface, significantly enhancing its oxidation resistance. Beyond 1000 ℃, this Al2O3 film fractures, leading to the transformation of the primary phases into Fe2O3, Al4B2O9, and amorphous B₂O₃. Within the oxidation temperature range of 300-800℃, the wave absorption performance of the sample progressively improves with increasing oxidation temperature, exhibiting particularly outstanding dielectric loss capabilities around 10 GHz. At an oxidation temperature of 900℃, the sample achieves a reflection loss (RL) of -42.6 dB at a frequency of 11.28 GHz, with a corresponding thickness of 2.8 mm. The Al2O3 film significantly enhances dielectric loss efficiency by inducing interfacial polarization loss at the "oxide film-matrix" interface. This study elucidates that the oxidation mechanisms of Fe2AlB2 at varying temperatures and examines the consequent impacts on its wave-absorbing properties, thereby providing a theoretical foundation for its application in high-temperature wave-absorbing environments.

Key words: Fe2AlB2, oxidation resistance, wave-absorbing properties, thermal stability

中图分类号: