无机材料学报

• •    

ZnFe2O4//rGH水系光辅助充电超级电容器的构建与性能研究

王瑜, BASSANYIN Christopher, 刘欣, 王艳香, 李家科   

  1. 景德镇陶瓷大学 材料科学与工程学院,景德镇 333403
  • 收稿日期:2025-02-20 修回日期:2025-05-16
  • 通讯作者: 李家科, 教授. E-mail: jiakeli.jci@163.com
  • 作者简介:王瑜 (1999-), 女, 硕士研究生. E-mail: 349035143@qq.com
  • 基金资助:
    江西省教育厅科技项目(GJJ2201002)

Construction and Performance of ZnFe2O4//rGH Aqueous Photo-assisted Charging Supercapacitor

WANG Yu, BASSANYIN Christopher, LIU Xin, WANG Yanxiang, LI Jiake   

  1. School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
  • Received:2025-02-20 Revised:2025-05-16
  • Contact: LI Jiake, professor. E-mail: jiakeli.jci@163.com
  • About author:WANG Yu (1999-), female, Master candidate. E-mail: 349035143@qq.com
  • Supported by:
    Science and Technology Research Project of Jiangxi Provincial Education Department (GJJ2201002)

摘要: 太阳能收集与存储技术的协同创新为构建新型自供能系统提供了重要方向,其中光辅助充电超级电容器因其独特的光致电荷存储机制和快速充放电特性成为研究热点,并且具有高功率密度和快速充放电特性,为可穿戴电子设备等能源收集与存储提供了一种高效、环保和可持续的新策略。本研究以水热法合成ZnFe2O4,将其作为超级电容器光阳极,以改进Hummers法和水热法合成还原氧化石墨烯水凝胶(reduced Graphene Oxide Hydrogel,rGH),将其作为超级电容器的阴极,以Zn(CF3SO3)2水溶液为电解液构建水系光辅助充电超级电容器。合成产物的物相组成,微观形貌,化学结构,光吸收性能和超级电容器的光电化学性能的研究结果表明,在光电协同充电条件下(0.2 A·g-1电流密度、95 mW·m-2光照强度),超级电容器的比容量可达148 F·g-1,比电充比容量提高17%。此外,该超级电容器在循环10000次条件下,在电充和光电协同充电的容量保持率分别为80%和90%。所构建的水系光辅助充电超级电容器具有较高的比容量和良好循环稳定性,在可穿戴电子产品等领域具有潜在应用前景。

关键词: ZnFe2O4, rGH, 超级电容器, 光电性能

Abstract: The synergistic innovation of solar energy collection and storage technology provides an important direction for constructing a new type of self-supply system, in which photo-assisted charging supercapacitor has become a research hotspot due to their unique photo-induced charge storage mechanism and fast charging/discharging characteristics with high power density and fast charging/discharging characteristics, which provides an efficient, environmentally friendly, and sustainable new strategy for energy harvesting and storage in wearable electronic devices and other related products. In this work, ZnFe2O4 was synthesized by the hydrothermal method and employed as the supercapacitor photoanode, while reduced graphene oxide hydrogel (rGH) was prepared using an improved Hummers method followed by hydrothermal treatment, served as the cathode, and Zn (CF3SO3)2 aqueous solution was used as the electrolyte to construct an aqueous photo-assisted charging supercapacitor. The results from the study of the synthesized products, including phase composition, microscopic morphology, chemical structure, light absorption properties, and the photoelectrochemical performance of the supercapacitor, show that under the photoelectrical synergistic charging conditions (current density of 0.2 A·g-1 and light intensity of 95 mW·cm-2), the specific capacity of supercapacitor reaches 148 F·g-1, 17% higher than that with only electric charging conditions. The capacity retention rates of the device are 80% and 90% for 10000 cycles under only electric charging and photoelectric synergistic charging, respectively. The constructed aqueous photo-assisted charging supercapacitor exhibits high specific capacity and excellent cycling stability, demonstrating promising potential for applications in wearable electronics and related fields.

Key words: ZnFe2O4, rGH, supercapacitor, photoelectric performance

中图分类号: