无机材料学报 ›› 2025, Vol. 40 ›› Issue (6): 667-674.DOI: 10.15541/jim20240543

• 研究论文 • 上一篇    下一篇

生长条件对BiFeO3纳米岛内自组装铁电拓扑畴形成的影响

周厚霖(), 宋志庆, 田国(), 高兴森()   

  1. 华南师范大学 华南先进光电子研究院, 先进材料研究所, 广州 510006
  • 收稿日期:2024-12-28 修回日期:2025-02-28 出版日期:2025-06-20 网络出版日期:2025-03-06
  • 通讯作者: 田 国, 副研究员. E-mail: guotian@m.scnu.edu.cn;
    高兴森, 研究员. E-mail: xingsengao@scnu.edu.cn
  • 作者简介:周厚霖(2000-), 男, 硕士研究生. E-mail: zhouhoulin2000@163.com
  • 基金资助:
    国家重点研发计划(2022YFB3807603);国家自然科学基金重大研究计划重点项目(92163210);广东省自然科学基金(2024A1515011608)

Effects of Growth Conditions on the Formation of Self-assembly Grown Topological Domain in BiFeO3 Nanoislands

ZHOU Houlin(), SONG Zhiqing, TIAN Guo(), GAO Xingsen()   

  1. Institute for Advanced Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
  • Received:2024-12-28 Revised:2025-02-28 Published:2025-06-20 Online:2025-03-06
  • Contact: TIAN Guo, associate professor. E-mail: guotian@m.scnu.edu.cn;
    GAO Xingsen, professor. E-mail: xingsengao@scnu.edu.cn
  • About author:ZHOU Houlin (2000-), male, Master candidate. E-mail: zhouhoulin2000@163.com
  • Supported by:
    National Key R&D Program of China(2022YFB3807603);Major Research Plan of the National Natural Science Foundation of China(92163210);Guangdong Basic and Applied Basic Research Foundation(2024A1515011608)

摘要:

铁电材料中的极化拓扑畴结构具有丰富的物理特性, 在新型微纳电子器件领域展示出广泛的应用前景。设计与调控铁电拓扑畴的形态是实现其器件化应用的基础。本工作系统地研究了生长条件对铁酸铋(BiFeO3, BFO)薄膜弯曲隆起形成的纳米岛内中心型极化拓扑畴形态的影响机制。实验结果表明, 中心型拓扑畴的形成与底层钌酸锶(SrRuO3, SRO)电极纳米岛、纳米岛尺寸、BFO外延生长的温度与沉积厚度紧密相关。当电极纳米岛横向尺寸介于300~500 nm时, 后续BFO薄膜生长隆起并诱导形成纳米岛, 同时也诱导形成四象限中心型拓扑畴构型。随着电极纳米岛高度逐渐增加, 铁电纳米岛的畴结构从薄膜的条带畴转变为中心型拓扑畴; 当电极直径大于500 nm时, 中心畴会转变为之字形畴壁的构型, 表明形貌隆起带来的挠曲电效应对拓扑畴形成具有重要作用。在特定参数范围内(生长温度690~730 ℃, BFO厚度30~60 nm), 提高生长温度有利于形成完整四象限中心型拓扑畴, 也进一步说明薄膜缺陷、畴壁能与挠曲等多种因素协同作用机制。同时, 这种中心型拓扑畴可以通过外场调控翻转, 并诱导高/低导电态切换, 为开发基于极化拓扑电子器件奠定基础。

关键词: 铁酸铋, 自组装, 纳米岛阵列, 中心型拓扑畴, 挠曲电效应

Abstract:

Ferroelectric topological domain structures exhibit rich physical properties, displaying a wide range of application potential for next-generation nanoelectronic devices. The fundamental issue for the applications of topological devices lies in the precise design and control of ferroelectric topological domain states. Here, the effects of growth conditions on center-type quadrant topological domain configurations in BiFeO3 (BFO) nanoislands formed through bending-induced bulges were investigated, which were generated by underlying electrode SrRuO3 (SRO) nanoislands. The experimental results indicate that the formation of central-type topological domains is closely related to the growing conductions of SRO electrode nanoislands, nanoislands dimensions, temperature of BFO epitaxial growth, and BFO deposition thickness. When the lateral size of the electrode nanoislands ranges from 300 to 400 nm, the subsequently grown BFO thin film with nanoislands, and central-type four-quadrant topological domains can be induced by the underlying electrode protrusions. As the height of the electrode nanoislands gradually increases, the domain structure of the ferroelectric nanoislands changes from stripe domains of the thin film to central-type topological domains. However, at the diameter of electrode nanoisland exceeding 500 nm, the central domain transforms into a zigzag domain-wall configuration, demonstrating the important role of flexoelectric effects induced by morphological protrusions in the formation of topological domains. Within certain growth parameters (growth temperature in the range of 690-730 ℃ and BFO thickness in the range of 30-60 nm), increasing the growth temperature facilitates formation of complete four-quadrant central-type topological domains, revealing synergistic interactions among defects, domain wall energy, and flexoelectric effects on the formation of central domain states. This central-type topological domain can also be switched by external field, and simultaneously induce switching between high/low conductive states, laying a foundation for the further construction of polarization topological electronic devices.

Key words: BiFeO3, self-assembly, nanoisland array, central-type topological domain, flexoelectric effect

中图分类号: