无机材料学报 ›› 2016, Vol. 31 ›› Issue (6): 627-633.DOI: 10.15541/jim20150518 CSTR: 32189.14.10.15541/jim20150518
李 玲1, 肖俊莹1, 崔米豆1, 太优一2, 庞永文1, 韩 松1, 李晓苇1
收稿日期:
2015-10-23
修回日期:
2015-12-01
出版日期:
2016-06-20
网络出版日期:
2016-05-19
作者简介:
李 玲(1980–), 女, 副教授. E-mail: lilinghbu@163.com
基金资助:
LI Ling1, XIAO Jun-Ying1, CUI Mi-Dou1, TAI You-Yi2, PANG Yong-Wen1, HAN Song1, LI Xiao-Wei1
Received:
2015-10-23
Revised:
2015-12-01
Published:
2016-06-20
Online:
2016-05-19
About author:
LI Ling. E-mail: lilinghbu@163.com
Supported by:
摘要:
采用水热法制备硼硫(B/S)共掺杂纳米二氧化钛(B-S-TiO2), 并配制成浆料, 利用丝网印刷技术在FTO导电玻璃上制备B-S-TiO2薄膜; 用化学浴沉积(CBD)法制备了CdS量子点敏化B-S-TiO2薄膜电极, 并用X射线衍射(XRD)、电子显微镜(TEM)、元素分析能谱(EDS)和紫外-可见光谱对其进行表征分析; 结果显示: B/S共掺杂不会改变TiO2的晶型, 掺杂后的TiO2吸收边带发生明显红移, 吸收强度显著增强; 同样用化学浴沉积的方法制备NiS工作电极, 用改性的聚硫化物((CH3)4N)2S/((CH3)4N)2Sn)电解液, 组装CdS量子点敏化硼硫(B/S)共掺杂纳米二氧化钛(B-S-TiO2)太阳能电池, 并测试电池光电性能。测试结果表明, 在AM1.5G的照射下, 电池的能量转化效率(η)由3.21%增大到3.69%, 提高了14.9%, 电池获得高达 (Voc)1.218 V的开路电压和3.42 mA/cm2的短路光电流(Jsc), 以及高达88.7%的填充因子(ff)。
中图分类号:
李 玲, 肖俊莹, 崔米豆, 太优一, 庞永文, 韩 松, 李晓苇. 高效CdS量子点敏化B/S共掺杂纳米TiO2太阳能电池的制备及光电性能研究[J]. 无机材料学报, 2016, 31(6): 627-633.
LI Ling, XIAO Jun-Ying, CUI Mi-Dou, TAI You-Yi, PANG Yong-Wen, HAN Song, LI Xiao-Wei. Boron and Sulfur Co-doped TiO2 Nanofilm as High Efficiency CdS Quantum-dot-sensitized Solar Cells[J]. Journal of Inorganic Materials, 2016, 31(6): 627-633.
Sample | Voc/V | Jsc/(mA·cm-2) | ff | Eff |
---|---|---|---|---|
TiO2/TGA/CdS-1 | 1.102 | 1.46 | 75.1% | 1.21% |
TiO2/TGA/CdS-2 | 1.204 | 2.25 | 77.7% | 2.10% |
TiO2/TGA/CdS-3 | 1.217 | 2.96 | 89.1% | 3.21% |
TiO2/TGA/CdS-4 | 1.207 | 1.33 | 68.2% | 1.09% |
TiO2/TGA/CdS-5 | 1.122 | 2.09 | 42.3% | 0.99% |
表1 不同CdS量子点沉积层数下基于纯TiO2电池的J-V曲线参数
Table 1 Parameter of J-V curve in different amounts of CdS quantum deposition layer with pure TiO2
Sample | Voc/V | Jsc/(mA·cm-2) | ff | Eff |
---|---|---|---|---|
TiO2/TGA/CdS-1 | 1.102 | 1.46 | 75.1% | 1.21% |
TiO2/TGA/CdS-2 | 1.204 | 2.25 | 77.7% | 2.10% |
TiO2/TGA/CdS-3 | 1.217 | 2.96 | 89.1% | 3.21% |
TiO2/TGA/CdS-4 | 1.207 | 1.33 | 68.2% | 1.09% |
TiO2/TGA/CdS-5 | 1.122 | 2.09 | 42.3% | 0.99% |
Sample | Voc/V | Jsc/(mA·cm-2) | ff | Eff |
---|---|---|---|---|
B/S/TiO2/TGA/CdS/1 | 1.211 | 1.17 | 67.8% | 0.96% |
B/S/TiO2/TGA/CdS/2 | 1.225 | 2.55 | 83.8% | 2.62 % |
TiO2/TGA/CdS-3 | 1.217 | 2.96 | 89.1% | 3.21% |
B/S/TiO2/TGA/CdS/3 | 1.218 | 3.42 | 88.7% | 3.69 % |
B/S/TiO2/TGA/CdS/4 | 1.112 | 1.25 | 80.9% | 1.12% |
B/S/TiO2/TGA/CdS/5 | 1.211 | 1.48 | 48.2% | 0.86% |
表2 不同CdS量子点沉积层数下基于B/S-TiO2电池的J-V曲线参数
Table 2 Parameter of J-V curve in different amount of CdS quantum deposition layer with B/S-TiO2
Sample | Voc/V | Jsc/(mA·cm-2) | ff | Eff |
---|---|---|---|---|
B/S/TiO2/TGA/CdS/1 | 1.211 | 1.17 | 67.8% | 0.96% |
B/S/TiO2/TGA/CdS/2 | 1.225 | 2.55 | 83.8% | 2.62 % |
TiO2/TGA/CdS-3 | 1.217 | 2.96 | 89.1% | 3.21% |
B/S/TiO2/TGA/CdS/3 | 1.218 | 3.42 | 88.7% | 3.69 % |
B/S/TiO2/TGA/CdS/4 | 1.112 | 1.25 | 80.9% | 1.12% |
B/S/TiO2/TGA/CdS/5 | 1.211 | 1.48 | 48.2% | 0.86% |
图4 (a)纯TiO2薄膜, (b)B/S共掺杂TiO2/TGA/CdS-1 薄膜, (c) B/S共掺杂TiO2/TGA/CdS-3 薄膜和(d) B/S共掺杂TiO2/ TGA/CdS-5的紫外-可见吸收光谱
Fig. 4 UV-vis absorption spectra of (a) pure TiO2 film, (b) B/S doped TiO2/TGA/CdS-1 film, (c) B/S doped TiO2/TGA/ CdS-3 film, and (d) B/S doped TiO2/TGA/CdS-5 film
图6 TiO2与B-S-TiO2电池的光电转换效率(IPCE)光谱
Fig. 6 Incident photon-to-current conversion efficiency (IPCE) of the cell based on TiO2/TGA/CdS-3 electrode and B-S-TiO2/ TGA/CdS-3 electrode
[1] | O'REGAN B, GRAETZEL M, O'REGAN B, et al. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.Nature, 1991, 353(6346): 737-740. |
[2] | LEE Y L, LO Y S.Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe.Advanced Functional Materials, 2009, 19(4): 604-609. |
[3] | JIN Z, ZHANG X, LI Y, et al.5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation.Catalysis Communications, 2007, 8(8): 1267-1273. |
[4] | XIAOBO C, CLEMENS B.The electronic origin of the visible- light absorption properties of C-, N- and S-doped TiO2 nanomaterials.Journal of the American Chemical Society, 2008, 130(15): 5018. |
[5] | ZHAO Y, QIU X, BURDA C.The effects of sintering on the photocatalytic activity of N-doped TiO2 nanoparticles.Chemistry of Materials, 2008, 20(8): 2629-2636. |
[6] | CHEN X, SHEN S, GUO L, et al.Semiconductor-based photocatalytic hydrogen generation.Chemical Reviews, 2010, 110(11): 6503-6570. |
[7] | SANG L X, ZHANG Z Y, BAI G M, et al.A photoelectrochemical investigation of the hydrogen-evolving doped TiO2 nanotube arrays electrode.International Journal of Hydrogen Energy, 2012, 37(1): 854-859. |
[8] | ASAHI R, MORIKAWA T, OHWAKI T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides.Science, 2001, 293(5528): 269-271. |
[9] | YANG K, DAI Y, HUANG B.Understanding photocatalytic activity of S- and P-doped TiO2 under visible light from first-principles.J. Phys. Chem. C, 2007, 111(51): 18985-18994. |
[10] | CHI B, ZHAO L, JIN T.One-Step Template-free route for synthesis of mesoporous N-doped titania spheres.Journal of Physical Chemistry C, 2007, 111(17): 6189-6193. |
[11] | SHAO G.Red shift in manganese- and iron-doped TiO2: A DFT+U analysis.J. Phys. Chem. C, 2009, 113(16): 6800-6808. |
[12] | JIA L, WU C, LI Y, et al. Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S codoping. Applied Physics Letters, 2011, 98(21): 211903-1-3. |
[13] | KARUNAKARAN C, GOMATHISANKAR P, VIJAYABALAN A, et al.Visible light photocatalytic disinfection of bacteria by Cd-TiO2 .Catalysis Communications, 2011, 12(9): 826-829. |
[14] | JIA L, WU C, HAN S, et al.Theoretical study on the electronic and optical properties of (N, Fe)-codoped anatase TiO2 photocatalyst.Journal of Alloys & Compounds, 2011, 509(20): 6067-6071. |
[15] | RENGIFO-HERRERA J A, PIERZCHAŁA K, SIENKIEWICZ A, et al. Synthesis, characterization, and photocatalytic activities of nanoparticulate N, S-codoped TiO2 having different surface-to- volume ratios.The Journal of Physical Chemistry C, 2010, 114(6): 2717-2723. |
[16] | NAIK B, PARIDA K M, GOPINATH C S.Facile synthesis of N- and S-incorporated nanocrystalline TiO2 and direct solar-light- driven photocatalytic activity.J. Phys. Chem. C, 2010, 114(45): 19473-19482. |
[17] | XU J H, LI J, DAI W L, et al.Simple fabrication of twist-like helix N,S-codoped titania photocatalyst with visible-light response.Applied Catalysis B Environmental, 2008, 79(1): 72-80. |
[18] | RENGIFO-HERRERA J A, PULGARIN C. Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and E. coli inactivation under simulated solar light irradiation.Solar Energy, 2010, 84(1): 37-43. |
[19] | LIU G, ZHAO Y, SUN C, et al.Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2 .Angew. Chem. Int. Ed, 2008, 47(24): 4516-4520. |
[20] | EYCHMÜLLER A, HÄSSELBARTH A, KATSIKAS L, et al. Fluorescence mechanism of highly monodisperse Q-sized CdS colloids. Journal of Luminescence, 1991, 48-49(91): 745-749. |
[21] | HOTCHANDANI S, KAMAT P V.Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of the colloidal cadmium sulfide-zinc oxide system.J. Phys. Chem., 1992, 96(16): 6834-6839. |
[22] | TOYODA T, SAIKUSA K, SHEN Q.Photoacoustic and photocurrent ptudies of highly porous TiO2 electrodes sensitized by quantum-sized CdS.Japanese Journal of Applied Physics, 1999, 38(5S): 3185-3186. |
[23] | LIN S C, LEE Y L, CHANG C H, et al. Quantum-dot-sensitized solar cells: assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Applied Physics Letters, 2007, 90(14): 143517-1-3. |
[24] | CHANG C H, LEE Y L. Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum- dot-sensitized solar cells . Applied Physics Letters, 2007, 91(5): 053503-1-3. |
[25] | LIU D, KAMAT P V.Photoelectrochemical behavior of thin cadmium selenide and coupled titania/cadmium selenide semiconductor films .J. Phys. Chem., 1993, 97(41): 10769-10773. |
[26] | NASR C, KAMAT P V, HOTCHANDANI S.Photoelectro chemical behavior of coupled SnO2 & CdSe nanocrystalline semiconductor films .Journal of Electroanalytical Chemistry, 1997, 420(1): 201-207. |
[27] | RINCÓN M E, JIMÉNEZ A, ORIHUELA A, et al. Thermal treatment effects in the photovoltaic conversion of spray-painted TiO2 coatings sensitized by chemically deposited CdSe thin films.Solar Energy Materials & Solar Cells, 2001, 70(2): 163-173. |
[28] | PLASS R, PELET S, KRUEGER J, et al.Quantum dot sensitization of organic-inorganic hybrid solar cells.J. Phys. Chem. B, 2002, 106(31): 7578-7580. |
[29] | YU P, KAI Z, NORMAN A G, et al.Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots .J. Phys. Chem. B, 2006, 110(50): 25451-25454. |
[30] | ZABAN A, MIĆIĆ O I, GREGG B A, et al. Photosensitization of nanoporous TiO2 electrodes with InP quantum dots.Langmuir, 1998, 14(12): 3153-3156. |
[31] | SUN B, HAO Y Z, LI W, et al.Research progress in nanocrystalline solar cell.Journal of Hebei University of Science and Technology, 2002, 23(2): 22-30. |
[32] | WU W J, HAO Y Z.The study on sensitization and mechanism of the nanocrystalline photoelectron chemical cells.Journal of Hebei University of Science and Technology, 2004, 25(2): 4-9. |
[33] | LEE M M, JOL T, TSUTOMU M, et al.Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science, 2012, 338(6107): 643-647. |
[34] | MINGZHEN L, JOHNSTON M B, SNAITH H J.Efficient planar heterojunction perovskite solar cells by vapour deposition.Nature, 2013, 501(7467): 395-398. |
[35] | JULIAN B, NORMAN P, SOO-JIN M, et al.Sequential deposition as a route to high-performance perovskite-sensitized solar cells.Nature, 2013, 499(7458): 316-319. |
[36] | ZHOU H, CHEN Q, LI G, et al.Interface engineering of highly efficient perovskite solar cells.Science, 2014, 345(6196): 542-546. |
[37] | PARK N G.Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell.Journal of Physical Chemistry Letters, 2013, 4(15): 2423-2429. |
[38] | EDRI E, KIRMAYER S, CAHEN D, et al.High open-circuit voltage solar cells based on organic-inorganic lead bromide perovskite.Journal of Physical Chemistry Letters, 2013, 4(6): 897-902. |
[39] | PAN Z, MoRA-SERÓ I, SHEN Q, et al. High-efficiency “green” quantum dot solar cells.Journal of the American Chemical Society, 2014, 136(25): 9203-9210. |
[40] | ZHAO K, PAN Z, MORA-SERO I, et al.Boosting power conversion efficiencies of quantum dot sensitized solar cells beyond 8% by recombination control.Journal of the American Chemical Society, 2015, 137: 5602-5609. |
[41] | LÓPEZ-LUKE T, WOLCOTT A, XU L P, et al. Nitrogen-doped and CdSe quantum-dot-sensitized nanocrystalline TiO2 films for solar energy conversion applications.J. Phys. Chem. C, 2008, 112(4): 1282-1292. |
[42] | LING L, XICHUAN Y, JIAJIA G, et al.Highly efficient CdS quantum dot-sensitized solar cells based on a modified polysulfide electrolyte.Journal of the American Chemical Society, 2011, 133(22): 8458-8460. |
[43] | MINGKUI W, ANGHEL A M, BENO, T M, et al.CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells.Journal of the American Chemical Society, 2009, 131(44): 15976-15977. |
[44] | LU N, QUAN X, LI J Y, et al.Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability.J. Phys. Chem. C, 2007, 111(32): 11836-11842. |
[45] | LIU G, ZHAO Y M, SUN C H, et al.Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO2.Angew. Chem. Int. Ed., 2008, 47(24): 4516-4520. |
[46] | CHEN D M, YANG D, WANG Q, et al.Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind. Eng.Chem. Res., 2006, 45(12): 4110-4116. |
[47] | UMEBAYASHI T, YAMAKI T, ITOH H, et al.Band gap narrowing of titanium dioxide by sulfur doping.Phys. Lett., 2002, 81(3): 454-456. |
[48] | GONBEAU D, GUIMON C, PFISTER-GUILLOUZO G, et al.XPS study of thin films of titanium oxysulfides.Surface Science, 1991, 254(91): 81-89. |
[49] | LI X W, CHEN R X, CUI T, et al.Preparation and photocatalytic properties of PbS quantum dots sensitized B/S/TiO2 composite nanotube.Journal of materials science & Engineering, 2015, 33(5): 630-634. |
[50] | TIAN H, YANG X, CHEN R, et al.Effect of different dye baths and dye-structures on the performance of dye-sensitized solar cells based on triphenylamine dyes.J. Phys. Chem. C, 2008, 112(29): 11023-11033. |
[1] | 王红宁, 黄丽, 清江, 马腾洲, 黄维秋, 陈若愚. 有机-无机氧化硅空心球的合成及VOCs吸附应用[J]. 无机材料学报, 2022, 37(9): 991-1000. |
[2] | 许伟佳, 邱大平, 刘诗强, 李敏, 杨儒. 用于高性能超级电容器电极的栓皮栎基多孔活性炭的制备[J]. 无机材料学报, 2019, 34(6): 625-632. |
[3] | 王勇, 于云, 冯爱虎, 江峰, 胡学兵, 宋力昕. Nafion改性多级孔径石墨烯气凝胶制备与性能研究[J]. 无机材料学报, 2018, 33(4): 469-474. |
[4] | 鄢波, 彭泽洋, 吕斌, 刘薇. 圆偏振光诱导CdTe量子点再生长及其对光致发光的影响[J]. 无机材料学报, 2017, 32(12): 1321-1326. |
[5] | 余正发, 王旭珍, 侯亚男, 赵宗彬, 李 芮, 邱介山. 熔盐法制备氮掺杂多孔炭及其催化脱硫性能[J]. 无机材料学报, 2017, 32(7): 770-776. |
[6] | 白雪君, 刘 婵, 侯 敏, 王 彪, 曹 辉, 付俊杰. 锂离子电池硅/碳纳米管/石墨烯自支撑负极材料研究[J]. 无机材料学报, 2017, 32(7): 705-712. |
[7] | 胡枫香, 李 玲, 林 奎, 崔 兰, 石彩静, Sayyar Ali Shah, 崔 屾. 氮掺杂空心碳球的制备及其光学性质研究[J]. 无机材料学报, 2016, 31(8): 827-833. |
[8] | 孙晓丹, 刘中群, 颜 昊. 石墨烯量子点的制备及其生物应用[J]. 无机材料学报, 2016, 31(4): 337-344. |
[9] | 闻海萌, 宋 军, 王重庆, 周 瑜, 王 军. 海绵辅助离子液体干胶法合成ZSM-22分子筛大颗粒[J]. 无机材料学报, 2015, 30(6): 615-620. |
[10] | 黄燕华, 韩 响, 陈慧鑫, 陈松岩, 杨 勇. 锂离子电池多孔硅/碳复合负极材料的研究[J]. 无机材料学报, 2015, 30(4): 351-356. |
[11] | 陈爱兵, 于奕峰, 臧文伟, 齐国禄, 于运红, 李月彤. 掺氮多孔碳在二氧化碳吸附分离中的应用[J]. 无机材料学报, 2015, 30(1): 9-16. |
[12] | 赵新红, 李晓斌, 陈 静, 祁永东, 问娟娟, 季 东. 具有特殊形貌的多级孔SAPO-5分子筛的常压合成[J]. 无机材料学报, 2014, 29(8): 821-826. |
[13] | 李建林, 陈彬彬, 章 文, 王连军, 江 莞. 陶瓷/石墨烯块体复合材料的研究进展[J]. 无机材料学报, 2014, 29(3): 225-236. |
[14] | 李剑文, 周爱军, 刘兴泉, 李晶泽. 化学蚀刻法制备纳米硅线作为高能锂离子电池的负极[J]. 无机材料学报, 2013, 28(11): 1207-1212. |
[15] | 于晓磊, 杨 军, 冯雪娇, 高鹏飞, 王久林, 努丽燕娜. 多孔硅/碳复合负极材料的制备及电化学性能[J]. 无机材料学报, 2013, 28(9): 937-942. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||