Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (3): 275-280.DOI: 10.15541/jim20160315
• Orginal Article • Previous Articles Next Articles
YAN Hong-Hao, WU Lin-Song, LI Xiao-Jie, ZHAO Tie-Jun
Received:
2016-05-13
Revised:
2016-07-18
Published:
2017-03-20
Online:
2017-02-24
About author:
YAN Hong-Hao. E-mail: dlutpaper@163.com
Supported by:
CLC Number:
YAN Hong-Hao, WU Lin-Song, LI Xiao-Jie, ZHAO Tie-Jun. Influence of Explosion Temperature on Structure and Property of Nano-TiO2 Prepared by Gaseous Detonation Method[J]. Journal of Inorganic Materials, 2017, 32(3): 275-280.
Sample | Initial temperature/K | Amount of TiCl4/mL | Explosible gas | Molar ratio of TiCl4 and H2 | Volume fraction of H2 | Molar weight of H2/mol | Explosion heat /kJ | Explosion temperature/K |
---|---|---|---|---|---|---|---|---|
1 | 403 | 5 | H2 | 1:1 | 0.12 | 0.046 | 12.22 | 2399 |
2 | 403 | 5 | H2 | 1:2 | 0.25 | 0.096 | 25.50 | 2524 |
3 | 403 | 5 | H2 | 1:3 | 0.37 | 0.143 | 36.86 | 2848 |
4 | 403 | 5 | H2 | 1:4 | 0.50 | 0.193 | 48.95 | 3114 |
Table 1 Experiment parameter
Sample | Initial temperature/K | Amount of TiCl4/mL | Explosible gas | Molar ratio of TiCl4 and H2 | Volume fraction of H2 | Molar weight of H2/mol | Explosion heat /kJ | Explosion temperature/K |
---|---|---|---|---|---|---|---|---|
1 | 403 | 5 | H2 | 1:1 | 0.12 | 0.046 | 12.22 | 2399 |
2 | 403 | 5 | H2 | 1:2 | 0.25 | 0.096 | 25.50 | 2524 |
3 | 403 | 5 | H2 | 1:3 | 0.37 | 0.143 | 36.86 | 2848 |
4 | 403 | 5 | H2 | 1:4 | 0.50 | 0.193 | 48.95 | 3114 |
Enthalpy of formation substance | \(C_P^{400}\)/(J•K-1•mol-1) | \(C_P^{2000}\)/(J•K-1•mol-1) | \(C_P^{3000}\)/(J•K-1•mol-1) |
---|---|---|---|
TiO2 | 62.836 | 78.872 | 100.416 |
HCl | 29.203 | 35.618 | 37.269 |
H2O | 34.261 | 51.185 | 55.747 |
Table 2 Thermochemical data of substances
Enthalpy of formation substance | \(C_P^{400}\)/(J•K-1•mol-1) | \(C_P^{2000}\)/(J•K-1•mol-1) | \(C_P^{3000}\)/(J•K-1•mol-1) |
---|---|---|---|
TiO2 | 62.836 | 78.872 | 100.416 |
HCl | 29.203 | 35.618 | 37.269 |
H2O | 34.261 | 51.185 | 55.747 |
Sample | Content of Anatase and Rutile/% | DXRD/nm | DTEM/nm | SBET/(m2·g-1) |
---|---|---|---|---|
1 | A:31.7; R:68.3 | A: 36.62; R: 42.80 | 87.2 | 15.72 |
2 | A:7.8; R:92.2 | A: 36.95; R: 47.87 | 110.9 | 33.81 |
3 | A:60.3; R:39.7 | A: 51.31; R: 56.97 | 146.5 | 14.71 |
4 | A:69.0; R:31.0 | A: 39.88; R: 43.03 | 172.9 | 21.00 |
Table 3 Particle size, phase content and surface area of samples
Sample | Content of Anatase and Rutile/% | DXRD/nm | DTEM/nm | SBET/(m2·g-1) |
---|---|---|---|---|
1 | A:31.7; R:68.3 | A: 36.62; R: 42.80 | 87.2 | 15.72 |
2 | A:7.8; R:92.2 | A: 36.95; R: 47.87 | 110.9 | 33.81 |
3 | A:60.3; R:39.7 | A: 51.31; R: 56.97 | 146.5 | 14.71 |
4 | A:69.0; R:31.0 | A: 39.88; R: 43.03 | 172.9 | 21.00 |
[1] | MA Y, WANG X L, JIA Y S, et al.Titanium dioxide-based nanomaterials for photocatalytic fuel generations.Chem. Rev., 2014, 114(19): 9987-10043. |
[2] | OCHIAI T, FUJISHIMA A.Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification.Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(4): 247-262. |
[3] | FEI H, LENG W H, LI X, et al.Photocatalytic oxidation of arsenite over TiO2: is superoxide the main oxidant in normal air-saturated aqueous solutions?Environ. Sci. Technol., 2011, 45(10): 4532-4539. |
[4] | ZHOU S, LIU Y, LI J M, et al.Facile in situ synthesis of graphitic carbon nitride (g-C3N4)-N-TiO2 heterojunction as an efficient photocatalyst for the selective photoreduction of CO2 to CO.Applied Catalysis B: Environmental, 2014, 158: 20-29. |
[5] | YELLA A, LEE H W, TSAO H N, et al.Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency.Science, 2011, 334(6065): 629-634. |
[6] | OUYANG X, YAN HH, LIU J K, et al.Nano-titanium dioxide synthesis using gaseous detonation.Chinese Journal of High Pressure Physics, 2007, 21(4): 379-382. |
[7] | LI X J, OUYANG X, YAN H H, et al.Influence of gaseous detonation synthesis and ambient temperature on nanosized TiO2 particles.Rare Metal Materials and Engineering, 2007, 36(3): 371-373. |
[8] | YAN H H, WU L S, LI X J, et al.Influences of relative amount of substance of precursor on nano SiO2 particles prepared by oxyhydrogen gaseous deflagration.Explosion and Shock Waves, 2012, 32(6): 581-584. |
[9] | YAN H H, WU L S, LI X J, et al.Detonation synthesis of SnO2 nanoparticles in gas phase.Rare Metal Materials and Engineering, 2013, 42(7): 1325-1327. |
[10] | 巴伦主编, 程乃良等译. 纯物质热化学数据手册, 3版. 北京: 科学出版社, 2003: 788, 795, 1692. |
[11] | HU Y J, LI Z C.Progress on flame aerosol synthesis of nanomaterials.Materials China, 2012, 31(3): 44-55. |
[12] | SHI L Y, LI ZH C, CHEN A P, et al.Study on the nanosized TiO2 particles synthesized by TiCl4 high temperature gas phase oxidation.Functional Materials, 2000, 31(6): 625-627. |
[13] | YANG G X, ZHUANG H R, BISWAS P.Characterization and sinterability of nanophasetitania particles processed in flame reactors.NanoStructured Materials, 1996, 7(6): 675-689. |
[14] | ATSUO K, KATSUKI K, SHIGEHARU M.Growth and transformation of TiO2 crystallites in aerosol reactor.AIChE Journal, 1999, 37(3): 347-359. |
[15] | YAN H H, WU L S, LI X J, et al.Application of particles growth model in gaseous detonation of SnO2 nanoparticles.Rare Metal Materials and Engineering, 2015, 44(5): 1144-1148. |
[16] | 朱永法. 纳米材料的表征与测试技术. 北京: 化学工业出版社, 2006: 158-160. |
[17] | ZHANG Q H, GAO L, GUO J K.Photocatalytic activity of nanosized TiO2.Journal of Inorganic Materials, 2000, 15(3): 556-560. |
[1] | WANG Luping, LU Zhanhui, WEI Xin, FANG Ming, WANG Xiangke. Application of Improved Grey Model in Photocatalytic Data Prediction [J]. Journal of Inorganic Materials, 2021, 36(8): 871-876. |
[2] | AN Weijia, LI Jing, WANG Shuyao, HU Jinshan, LIN Zaiyuan, CUI Wenquan, LIU Li, XIE Jun, LIANG Yinghua. Fe(III)/rGO/Bi2MoO6 Composite Photocatalyst Preparation and Phenol Degradation by Photocatalytic Fenton Synergy [J]. Journal of Inorganic Materials, 2021, 36(6): 615-622. |
[3] | XIAO Xiang, GUO Shaoke, DING Cheng, ZHANG Zhijie, HUANG Hairui, XU Jiayue. CsPbBr3@TiO2 Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst [J]. Journal of Inorganic Materials, 2021, 36(5): 507-512. |
[4] | XIONG Jinyan, LUO Qiang, ZHAO Kai, ZHANG Mengmeng, HAN Chao, CHENG Gang. Facilely Anchoring Cu nanoparticles on WO3 Nanocubes for Enhanced Photocatalysis through Efficient Interface Charge Transfer [J]. Journal of Inorganic Materials, 2021, 36(3): 325-331. |
[5] | SHU Mengyang, LU Jialin, ZHANG Zhijie, SHEN Tao, XU Jiayue. CsPbBr3 Perovskite Quantum Dots/Ultrathin C3N4 Nanosheet 0D/2D Composite: Enhanced Stability and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2021, 36(11): 1217-1222. |
[6] | LIU Yaxin, WANG Min, SHEN Meng, WANG Qiang, ZHANG Lingxia. Bi-doped Ceria with Increased Oxygen Vacancy for Enhanced CO2 Photoreduction Performance [J]. Journal of Inorganic Materials, 2021, 36(1): 88-94. |
[7] | ZHANG Dongshuo,CAI Hao,GAO Kaiyin,MA Zichuan. Preparation and Visible-light Photocatalytic Degradation on Metronidazole of Zn2SiO4-ZnO-biochar Composites [J]. Journal of Inorganic Materials, 2020, 35(8): 923-930. |
[8] | LI Neng,KONG Zhouzhou,CHEN Xingzhu,YANG Yufei. Research Progress of Novel Two-dimensional Materials in Photocatalysis and Electrocatalysis [J]. Journal of Inorganic Materials, 2020, 35(7): 735-747. |
[9] | ZHENG Yun,CHEN Yilin,GAO Bifen,LIN Bizhou. Progress on Phosphorene for Photocatalytic Water Splitting [J]. Journal of Inorganic Materials, 2020, 35(6): 647-653. |
[10] | PENG Zhangmei,ZHAO Anting,FU Maofen. Synthesis and Photocatalytic Properties of Cucurbit[6]uril/CdS-Ag2S Composite Photocatalyst [J]. Journal of Inorganic Materials, 2020, 35(6): 703-708. |
[11] | WU Fan, ZHAO Ziyan, LI Bangxin, DONG Fan, ZHOU Ying. Interfacial Oxygen Vacancy of Bi2O2CO3/PPy and its Visible-light Photocatalytic NO Oxidation Mechanism [J]. Journal of Inorganic Materials, 2020, 35(5): 541-548. |
[12] | ZHANG Zhijie,HUANG Hairui,CHENG Kun,GUO Shaoke. High Efficient Carbon Quantum Dots/BiOCl Nanocomposite for Photocatalytic Pollutant Degradation [J]. Journal of Inorganic Materials, 2020, 35(4): 491-496. |
[13] | ZHANG Sai, ZOU Yingtong, CHEN Zhongshen, LI Bingfeng, GU Pengcheng, WEN Tao. Visible-light-driven Activation of Persulfate by RGO/g-C3N4 Composites for Degradation of BPA in Wastewater [J]. Journal of Inorganic Materials, 2020, 35(3): 329-336. |
[14] | ZHENG Qian, CAO Yuehan, HUANG Nanjian, DONG Fan, ZHOU Ying. BiOBr-BN Photocatalysts for Promoting Photocatalytic NO Oxidation and Inhibiting Toxic By-products [J]. Journal of Inorganic Materials, 2020, 35(11): 1255-1262. |
[15] | LI Zhifeng, TAN Jie, YANG Xiaofei, LIN Zuhong, HUAN Zhenglai, ZHANG Tingting. Preparation and Visible Light Photocatalytic Performance of BiOBr/Ti3C2 Composite Photocatalyst with Highly Exposed (001) Facets [J]. Journal of Inorganic Materials, 2020, 35(11): 1247-1254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||