Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (3): 281-286.DOI: 10.15541/jim20160324
• Orginal Article • Previous Articles Next Articles
LI Peng-Ting1,2, WANG Kai1,2, JIANG Da-Chuan1,2, REN Shi-Qiang1,2, TAN-Yi1,2, AN Guang-Ye3, ZHANG Lei3, GUO Xiao-Liang3, WANG Feng3
Received:
2016-05-17
Revised:
2016-07-05
Published:
2017-03-20
Online:
2017-02-24
About author:
LI Peng-Ting. E-mail:ptli@dlut.edu.cn
Supported by:
CLC Number:
LI Peng-Ting, WANG Kai, JIANG Da-Chuan, REN Shi-Qiang, TAN-Yi, AN Guang-Ye, ZHANG Lei, GUO Xiao-Liang, WANG Feng. Coupling of Metallurgical Method to Remove Impurities in Solar Grade Polycrystalline Silicon[J]. Journal of Inorganic Materials, 2017, 32(3): 281-286.
Element | B | P | Al | Ca | Fe | Mg | Na | TM |
---|---|---|---|---|---|---|---|---|
Concentration | 1.55 | 6.67 | 149.15 | 154.00 | 300.73 | 0.60 | 0.84 | 1059.06 |
Table1 Component test results of industrial silicon (ppmw)
Element | B | P | Al | Ca | Fe | Mg | Na | TM |
---|---|---|---|---|---|---|---|---|
Concentration | 1.55 | 6.67 | 149.15 | 154.00 | 300.73 | 0.60 | 0.84 | 1059.06 |
Element | B | P | Al | Ca | Fe | Mg | Na | TM |
---|---|---|---|---|---|---|---|---|
First | 0.60 | 6.84 | 0.67 | 15.96 | 461.00 | 1.21 | 563.36 | 1154.92 |
Second | 0.26 | 7.61 | 0.36 | 2.38 | 525.00 | 4.68 | 468.16 | 967.46 |
Third | 0.21 | 8.13 | 0.46 | 0.56 | 918.00 | 8.18 | 352.36 | 811.32 |
Table 2 Component test results of silicon after medium melting (ppmw)
Element | B | P | Al | Ca | Fe | Mg | Na | TM |
---|---|---|---|---|---|---|---|---|
First | 0.60 | 6.84 | 0.67 | 15.96 | 461.00 | 1.21 | 563.36 | 1154.92 |
Second | 0.26 | 7.61 | 0.36 | 2.38 | 525.00 | 4.68 | 468.16 | 967.46 |
Third | 0.21 | 8.13 | 0.46 | 0.56 | 918.00 | 8.18 | 352.36 | 811.32 |
Solidification ratio | B | P | Al | Ca | Fe | Mg | Na | TM |
---|---|---|---|---|---|---|---|---|
0.98 | 0.22 | 7.84 | 9.00 | 29.16 | 3986.00 | 29.69 | 5.76 | 8131.96 |
0.90 | 0.18 | 6.33 | 2.61 | 13.64 | 393.68 | 8,17 | 2.06 | 746.46 |
0.86 | 0.16 | 5.96 | 0.13 | 0.18 | 0.36 | 0.13 | 0.20 | 2.29 |
0.78 | 0.15 | 5.16 | 0.21 | 0.68 | 0.31 | 0.08 | 0.45 | 1.09 |
0.62 | 0.12 | 5.19 | 0.21 | 0.13 | 0.42 | 0.10 | 0.20 | 0.97 |
0.42 | 0.11 | 5,87 | 0.20 | 0.30 | 0.27 | 0.07 | 0.28 | 0.67 |
0.22 | 0.12 | 4.96 | 0.16 | 0.24 | 0.21 | 0.08 | 0.16 | 0.56 |
0.06 | 0.08 | 4.13 | 0.08 | 0.61 | 0.26 | 0.07 | 0.17 | 0.53 |
0.02 | 0.11 | 4.46 | 0.09 | 0.18 | 0.21 | 0.06 | 0.19 | 0.47 |
Table3 Component test results of silicon ingot after directional solidification (ppmw)
Solidification ratio | B | P | Al | Ca | Fe | Mg | Na | TM |
---|---|---|---|---|---|---|---|---|
0.98 | 0.22 | 7.84 | 9.00 | 29.16 | 3986.00 | 29.69 | 5.76 | 8131.96 |
0.90 | 0.18 | 6.33 | 2.61 | 13.64 | 393.68 | 8,17 | 2.06 | 746.46 |
0.86 | 0.16 | 5.96 | 0.13 | 0.18 | 0.36 | 0.13 | 0.20 | 2.29 |
0.78 | 0.15 | 5.16 | 0.21 | 0.68 | 0.31 | 0.08 | 0.45 | 1.09 |
0.62 | 0.12 | 5.19 | 0.21 | 0.13 | 0.42 | 0.10 | 0.20 | 0.97 |
0.42 | 0.11 | 5,87 | 0.20 | 0.30 | 0.27 | 0.07 | 0.28 | 0.67 |
0.22 | 0.12 | 4.96 | 0.16 | 0.24 | 0.21 | 0.08 | 0.16 | 0.56 |
0.06 | 0.08 | 4.13 | 0.08 | 0.61 | 0.26 | 0.07 | 0.17 | 0.53 |
0.02 | 0.11 | 4.46 | 0.09 | 0.18 | 0.21 | 0.06 | 0.19 | 0.47 |
Element | B | P | Al | Ca | Fe | Mg | Na | TM |
---|---|---|---|---|---|---|---|---|
Concentration | 0.180 | 0.190 | 0.019 | 0.027 | 0.026 | 0.003 | 0.008 | 0.228 |
Table 4 Component test results of silicon after electron beam melting (ppmw)
Element | B | P | Al | Ca | Fe | Mg | Na | TM |
---|---|---|---|---|---|---|---|---|
Concentration | 0.180 | 0.190 | 0.019 | 0.027 | 0.026 | 0.003 | 0.008 | 0.228 |
[1] | POWELL D M, WINKLER M T, CHOI H J, et al.Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs.Energy and Environmental Science, 2012, 5(3): 5874-5883. |
[2] | TYAGI V V, RAHIM N A A, RAHIM N A, et al. Progress in solar PV technology: research and achievement.Renewableand Sustainable Energy Reviews, 2013, 20: 443-461. |
[3] | CIFTJA A.Refining of solar cell silicon through metallurgical routes.JOM, 2012, 64(8): 933-934. |
[4] | YU W Z, MA W H, LV G Q, et al.Low-cost process for silicon purification with bubble adsorption in Al-Si melt.Metallurgicaland Materials Transactions B-process Metallurgy and Materials Processing Science, 2014, 45(4): 1573-1578. |
[5] | CORTES A D S, SILVA D S, VIANA G A, et al. Solar cells from upgraded metallurgical-grade silicon purified by metallurgical routes.Journal of Renewable Sustainable Energy, 2013, 5(2): 123-129. |
[6] | FANG M, LU C, HUANG L, et al.Multiple slag operationon boron removal from metallurgical-grade silicon using Na2O-SiO2 slags.Industrialand Engineering Chemistry Research, 2014, 53(30): 12054-12062. |
[7] | PIZZINI S.Towards solar grade silicon: challenges and benefits for low cost photovoltaics.Solar EnergyMaterialsand Solar Cells, 2010, 94(9): 1528-1533. |
[8] | YUGE N, ABE M, HANAZAWA K, et al.Purification of metallurgical-grade silicon up to solar grade.Progress in Photovoltaics, 2001, 9(3): 203-209. |
[9] | HANAZAWA K, YUGE N, KATO Y.Evaporation of phosphorus in molten silicon by an electron beam irradiation method.Materials Transactions, 2004, 45(3): 844-849. |
[10] | MORITA K, MIKI T.Thermodynamics of solar-grade-silicon refining.Intermetallics, 2003, 11(11/12): 1111-1117. |
[11] | MIKI T, MORITA K, SANO N.Thermodynamic properties of titanium and iron in molten silicon.Metallurgical and Materials Transactions B, 1997, 28(5): 861-867. |
[12] | CAI J, LU C H, LI J T, et al.Boron removal from metallurgical silicon by plasma melting using electromagnetic induction.Chinese Journal of Nonferrous Metals, 2012, 22(12): 3529-3534. |
[13] | CAI J, LI J T, CHEN W H, et al.Boron removal from metallurgical silicon using CaO-SiO2-CaF2 slags.Transactions of Nonferrous Metals Society of China, 2011, 21(6): 1402-1406. |
[14] | LU C H, HUANG L Q, LAI H X,et al.Effects of slag refining on boron removal from metallurgical-grade silicon using recycled slag with active component.Separation Scienceand Technology, 2015, 50(17): 2759-2766. |
[15] | LAI H X, HUANG L Q, FANG M, et al.Defects and electrical properties of crystalline silicon at different metallurgical route.Applied Mechanics and Materials, 2013, 420: 134-138. |
[16] | JIANG D C,SHI S, TAN Y, et al.Segregation and evaporation behaviors of aluminum and calcium in silicon during solidification process induced by electron beam.Semiconductor Science and Technology, 2015, 30(3): 35013-35016. |
[17] | SHI S, TAN Y, JIANG D C, et al.Removal of aluminum from silicon by electron beam melting with exponential decreasing power.Separationand Purification Technology, 2015, 152: 32-36. |
[18] | TAN Y, SHI S, JIANG D C.Progress in research and development of solar-grade silicon preparation by electron beam melting.Journalof Inorganic Materials, 2015, 30(8): 785-792. |
[19] | WEN S T, TAN Y, SHI S, et al.Thermal contact resistance between the surfaces of silicon and copper crucible during electron beam melting.International Journal of Thermal Sciences, 2013, 74: 37-43. |
[20] | TAN Y, GUO X L, SHI S, et al.Study on the removal process of phosphorus from silicon by electron beam melting.Vacuum, 2013, 93: 65-70. |
[21] | MEI X Y, MA W H, WEI K X, et al. Experiment research on purifying metallurgical grade silicon and crystal growth in directional solidification. Advanced Materials Research, 2009, 79-82: 1213-1216. |
[22] | WU J J, MA W H, XIE K G, et al.Research progress on preparation of solar grade silicon using metallurgical route.Journal of Kunming University of Science and Technology, 2012, 37(5): 11-16. |
[23] | MEI X Y, MA W H, DAI Y N, et al.Development and application in preparating solar grade silicon material of directional solidification technology.Light Metals, 2008, (9): 64-71. |
[24] | ZHANG J X, ZHU Y, YANG A N.Study on technology of solar grade polysilicon prepared by metallurgical method.Hot Working Technology, 2015, 44(3): 31-33, 37. |
[25] | REN S Q, LI P T, JIANG D C, et al.Removal of Cu, Mn and Na in multicrystalline silicon by directional solidification under low vacuum condition. Vacuum, 2015, 115: 108-112. |
[1] | SUN Luchao, ZHOU Cui, DU Tiefeng, WU Zhen, LEI Yiming, LI Jialin, SU Haijun, WANG Jingyang. Directionally Solidified Al2O3/Er3Al5O12 and Al2O3/Yb3Al5O12 Eutectic Ceramics Prepared by Optical Floating Zone Melting [J]. Journal of Inorganic Materials, 2021, 36(6): 652-658. |
[2] | Li Ya-Qiong, Li Jia-Yan, Tan Yi, Zhang Li-Feng, Morita Kazuki. Directional Growth of Bulk Silicon from Si-Al-Sn Melts [J]. Journal of Inorganic Materials, 2016, 31(8): 791-796. |
[3] | TAN Yi, SHI Shuang, JIANG Da-Chuan. Progress in Research and Development of Solar-grade Silicon Preparation by Electron Beam Melting [J]. Journal of Inorganic Materials, 2015, 30(8): 785-792. |
[4] | CUI Chun-Juan,ZHANG Jun,SU Hai-Jun,WANG Hong,LIU Lin,FU Heng-Zhi. Microstructures of Directionally Solidified Si-TaSi2 Eutectic in situ Composite for Field Emission [J]. Journal of Inorganic Materials, 2007, 22(5): 1019-1023. |
[5] | SUN Shi-Wen,PAN Xiao-Ming,LI Dong-Lin,LI Hong-Jun,ZHU Li-Hui,HUANG Qing-Wei,WANG Ping-Chu. Structure and Grain Growth Habit of Directional Solidification Ceramics of (1-x)Pb(Mg1/3Nb2/3)O3 - xPbTiO3 (x=0.30, 0.33, 0.38) Relaxor Ferroelectric Solid Solutions [J]. Journal of Inorganic Materials, 2004, 19(3): 541-545. |
[6] | PAN Zhen-Su,ZHANG Hui-Feng,GUO Jing-Kun. Status on the Unidirectionally Solidified Eutectic Composite [J]. Journal of Inorganic Materials, 1999, 14(4): 513-519. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||