Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (12): 1287-1293.DOI: 10.15541/jim20140192
• Orginal Article • Previous Articles Next Articles
CHEN Shu-Qing1, 2, LÜ Gong-Xuan1
Received:
2014-04-11
Revised:
2014-06-24
Published:
2014-12-20
Online:
2014-11-20
About author:
CHEN Shu-Qing. E-mail: chenshuqing139@163.com
Supported by:
CLC Number:
CHEN Shu-Qing, Lü Gong-Xuan. CO2 Methanation over Ru/TiO2 Catalysts under UV Irradiation and Heating[J]. Journal of Inorganic Materials, 2014, 29(12): 1287-1293.
Catalyst | SBET /(m2·g-1) | Vpore /(cm3·g-1) | Dpore /nm |
---|---|---|---|
P25 | 50.5 | 0.54 | 44.4 |
0.5%Ru/P25 | 48.3 | 0.26 | 21.5 |
1.0%Ru/P25 | 45.7 | 0.25 | 21.9 |
1.5%Ru/P25 | 49.7 | 0.28 | 22.6 |
2.0%Ru/P25 | 46.6 | 0.24 | 21.0 |
1.5%Ru/P25 (used)a | 46.8 | 0.23 | 21.2 |
Table 1 Physicochemical properties of the support and Ru/P25 catalysts
Catalyst | SBET /(m2·g-1) | Vpore /(cm3·g-1) | Dpore /nm |
---|---|---|---|
P25 | 50.5 | 0.54 | 44.4 |
0.5%Ru/P25 | 48.3 | 0.26 | 21.5 |
1.0%Ru/P25 | 45.7 | 0.25 | 21.9 |
1.5%Ru/P25 | 49.7 | 0.28 | 22.6 |
2.0%Ru/P25 | 46.6 | 0.24 | 21.0 |
1.5%Ru/P25 (used)a | 46.8 | 0.23 | 21.2 |
Fig. 5 Conversion of CO2 (a), CH4 selectivity (b) and CO sele-c-tivity (c) over the 0.5%-2.0% Ru/P25 catalyst at different temperatures Reaction conditions: 0.3 g catalyst; H2: CO2=4: 1; T=350℃, P = 105 Pa
[1] | MIKKELSEN M, JORGENSEN M, KREBS F C.The teraton challenge. a review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 2010, 3: 43-81. |
[2] | WANG W, WANG S P, MA X B, et al.Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev., 2011, 40(7): 3703-3727. |
[3] | DING M Y, YANG Y, WU B S, et al.Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer-Tropsch synthesis,J. Mol. Catal. A: Chem., 2009, 303: 65-71. |
[4] | KHODAKOV A Y, WEI C, PASCAL F.Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev., 2007, 107: 1692-1744. |
[5] | BORG Ø, ERI S, BLEKKAN E A, et al. Fischer-Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables. J. Catal., 2007, 248: 89-100. |
[6] | ZHAO G Y, ZHANG C H, QIN S D, et al.Effect of interaction between potassium and structural promoters on Fischer-Tropsch performance in iron-based catalysts. J. Mol. Catal. A: Chem., 2008, 286: 137-142. |
[7] | BORG Ø, HAMMER N, ERI S, et al. Fischer-Tropsch synthesis over un-promoted and Re-promotedg-Al2O3 supported cobalt catalysts with different pore sizes. Catal. Today, 2009, 142: 70-77. |
[8] | DORNER R W, HARDY D R, WILLIAMS F W, et al.K and Mn doped iron-based CO2 hydrogenation catalysts: detection of KAlH4 as part of the catalyst's active phase. Appl. Catal. A: General, 2010, 373: 112-121. |
[9] | HE XUE-ZHI, LI BING-JIE, WU ZHI-JIAN, et al. The preparation of layered double metals hydroxides Zn(Cu)/Al-LDHs and the photocatalytic reduction of CO2. J. Mol. Catal (China), 2013, 27(1): 70-75. |
[10] | KONG X Q, TANG X J, XU S, et al.Preparation CuO-ZnO/Al2O3 by Sol-Gel auto-combustion method and its catalytic property for methanol synthesis from CO2 hydrogen. J. Mol. Catal.(China), 2013, 27(2): 159-165. |
[11] | ZHANG Y J, DENG J L, ZHANG S J, et al.Investigation on CuO-ZnO-Al2O3/HZSM-5 catalyst for synthesis of dimethyl ether from CO2 hydrogen. J. Mol. Catal.(China), 2013, 27(3): 235-241. |
[12] | ROY S C, VARGHESE O K, PAULOSE M.Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 2010, 4(3): 1259-1278. |
[13] | DONG H Z, YIN X H, SUI D D, et al.Calculation of CO2 adsorption on SrTiO3(100) with density funcational theory. J. Mol. Catal.(China), 2012, 26(6): 554-559. |
[14] | XIE S J, WANG Y, ZHANG Q H.Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt-TiO2 in CH4 formation by addition of MgO. Chem. Commun., 2013, 49: 2451-2453. |
[15] | FUJISHIMA A, HONDA K.Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37-38. |
[16] | NOZIK A J.Photoelectrolysis of water using semiconducting TiO2 crystals. Nature, 1975, 257(5525): 383-386. |
[17] | INOUE T, FUJISHIMA A, KONISHI S.Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 1979, 277: 637-638. |
[18] | KONG D.Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Appl. Surf. Sci., 2013, 277: 105-110. |
[19] | ZHANG Q H, HAN W D, HONG Y J.Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today, 2009, 148: 335-340. |
[20] | THAMPI K R, KIWI J, GRATZEL M.Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature, 1987, 327: 506-508. |
[21] | LI X K, ZHUANG Z J, LI W. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl. Catal. A: General, 2012, 429-430: 31-38. |
[22] | YU K P, YU W Y, KUO M C, et al.Pt/titania-nanotube: a potential catalyst for CO2 adsorption and hydrogenation. Appl. Catal. B: Environ., 2008, 84: 112-118. |
[23] | JACQUEMIN M, BEULS A, RUIZ P.Catalytic production of methane from CO2 and H2 at low temperature: insight on the reaction mechanism. Catal. Today, 2010, 157: 462-466. |
[24] | SCHILD C, WOKAUN A, BAIKER A.On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study Part II. Surface species on copper/zirconia catalysts: implications for methanol synthesis selectivity. J. Mol. Catal., 1990, 63: 243-254. |
[25] | LO C C, HUNG C H, YUAN C S.Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials & Solar Cells, 2007, 91: 1765-1774. |
[26] | DIMITRIJEVIC N M, VIJAYAN B K, POLUEKTOV O G.Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc., 2011, 133: 3964-3971. |
[27] | VARGHESE O K, PAULOS M, LATEMPA T J, et al.High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett., 2009, 9(2): 731-737. |
[28] | ABE T, TANIZAWA M, WATANABE K, et al.CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ. Sci., 2009, 2: 315-321. |
[29] | JIANG QI, ZHU ZHI-CHEN, HUANG ZHONG-TAO. The catalytic activity of supported Ru catalyst for the methanation of CO2. Journal of South China University of Technology (Natural Science), 1996, 24(12): 109-114. |
[30] | LI BO, LU GONG-XUAN. Cosensitized TiO2 with different dyes for water splitting to hydrogen under visible light—structural similarity of dyes and their dual promoting effect. J. Mol. Catal (China), 2013, 27(4): 181-191. |
[31] | WU YU-QI, LU GONG-XUAN, ZHOU QUAN, et al. Hydrogen production by Pt/TiO2 photocatalytic reforming of ethanol. J. Mol. Catal (China), 2004, 16(2): 101-106. |
[32] | ZHEN WEN-LONG, LI BO, LU GONG XUAN, et al. Enhancing catalytic activity and stability for CO2 methanation on Ni-Ru/γ-Al2O3 via modulating impregnation sequence and controlling surface active species. RSC Adv., 2014, 4: 16472-16479. |
[33] | ELMASIDES C, KONDARIDES D I, GRULNERT W, et al.XPS and FTIR study of Ru/Al2O3 and Ru/TiO2 catalysts: reduction characteristics and interaction with a methane-oxygen mixture. J. Phys. Chem. B., 1999, 103: 5227-5239. |
[34] | ZHAI Q G, XIE S J, FAN W Q.Photocatalytic conversion of carbon dioxide with water into methane: Platinum and Copper(I) Oxide co-catalysts with a core-Shell structure. Angew. Chem. Int. Ed., 2013, 52: 5776-5779. |
[35] | FRESE K W, LEACH S.Electrochemical reduction of carbon dioxide to methane, methanol, and CO on Ru electrodes. J. Electrochem. Soc., 1985, 132: 259-260. |
[36] | WISE H, MCCARTHY J G.Thermodynamic properties of surface carbon on Ruthenium. Surface Sci., 1983, 133: 311-320. |
[37] | SOLYMOSI F, ERDOHELYI A, KOCSIS M.Methanation of CO2 on supported Ru catalysts. J. Chem. Soc., Faraday Trans., 1981, 77(1): 1003-1012. |
[38] | PRAIRIE M R, RENKEN A, HIGHFIELD J G, et al.A fourier transform infrared spectroscopic study of CO2 methanation on supported ruthenium. J. Catal., 1991, 129(1): 130-144. |
[39] | MICHEL MARWOOD, RALF DOEPPER, ALBERT RENKEN. In-situ surface and gas phase analysis for kinetic studies under transient conditions The catalytic hydrogenation of CO2. Appl. Catal. A: General., 1997, 151: 223-246. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | WANG Xu, LI Xiang, KOU Huamin, FANG Wei, WU Qinghui, SU Liangbi. Effect of Doping with Different Concentrations of Y3+ Ions on the Properties of CaF2 Crystals [J]. Journal of Inorganic Materials, 2024, 39(9): 1029-1034. |
[3] | WANG Kunpeng, LIU Zhaolin, LIN Cunsheng, WANG Zhiyu. Development of Quasi-solid-state Na-ion Battery Based on Water-minimal Prussian Blue Cathode [J]. Journal of Inorganic Materials, 2024, 39(9): 1005-1012. |
[4] | CHEN Jia, FAN Yiran, YAN Wenxin, HAN Yingchao. Polyacrylate-calcium (cerium) Nanocluster Fluorescent Probes for Quantitative Detection of Inorganic Phosphorus [J]. Journal of Inorganic Materials, 2024, 39(9): 1053-1062. |
[5] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[6] | HUANG Jianfeng, LIANG Ruihong, ZHOU Zhiyong. Effects of W/Cr Co-doping on the Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics [J]. Journal of Inorganic Materials, 2024, 39(8): 887-894. |
[7] | WANG Xuchang, JIAO Chuyu, JI Zhuo, JIAO Qirui, QIN Bo, DU Yanze, ZHENG Jiajun, LI Ruifeng. Polycrystalline ZSM-5 Aggregates Induced by Seed and Catalytic Performance in Methanol to Hydrocarbon [J]. Journal of Inorganic Materials, 2024, 39(8): 945-954. |
[8] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[9] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[10] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[11] | SHI Tong, GAN Qiaowei, LIU Dong, ZHANG Ying, FENG Hao, LI Qiang. Boost Electrochemical Reduction of CO2 to Formate Using a Self-supporting Bi@Cu Nanotree Electrode [J]. Journal of Inorganic Materials, 2024, 39(7): 810-818. |
[12] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[13] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[14] | ZHENG Zhongqiu, WEI Qinhua, TONG Yufeng, TANG Gao, YIN Hang, QIN Laishun. Effect of Zr4+ Co-doping on Neutron/Gamma Discrimination of Cs2LaLiBr6:Ce Crystals [J]. Journal of Inorganic Materials, 2024, 39(5): 539-546. |
[15] | YANG Endong, LI Baole, ZHANG Ke, TAN Lu, LOU Yongbing. ZnCo2O4-ZnO@C@CoS Core-shell Composite: Preparation and Application in Supercapacitors [J]. Journal of Inorganic Materials, 2024, 39(5): 485-493. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||