Journal of Inorganic Materials ›› 2014, Vol. 29 ›› Issue (12): 1287-1293.DOI: 10.15541/jim20140192
• Orginal Article • Previous Articles Next Articles
CHEN Shu-Qing1, 2, LÜ Gong-Xuan1
Received:
2014-04-11
Revised:
2014-06-24
Published:
2014-12-20
Online:
2014-11-20
About author:
CHEN Shu-Qing. E-mail: chenshuqing139@163.com
Supported by:
CLC Number:
CHEN Shu-Qing, Lü Gong-Xuan. CO2 Methanation over Ru/TiO2 Catalysts under UV Irradiation and Heating[J]. Journal of Inorganic Materials, 2014, 29(12): 1287-1293.
Catalyst | SBET /(m2·g-1) | Vpore /(cm3·g-1) | Dpore /nm |
---|---|---|---|
P25 | 50.5 | 0.54 | 44.4 |
0.5%Ru/P25 | 48.3 | 0.26 | 21.5 |
1.0%Ru/P25 | 45.7 | 0.25 | 21.9 |
1.5%Ru/P25 | 49.7 | 0.28 | 22.6 |
2.0%Ru/P25 | 46.6 | 0.24 | 21.0 |
1.5%Ru/P25 (used)a | 46.8 | 0.23 | 21.2 |
Table 1 Physicochemical properties of the support and Ru/P25 catalysts
Catalyst | SBET /(m2·g-1) | Vpore /(cm3·g-1) | Dpore /nm |
---|---|---|---|
P25 | 50.5 | 0.54 | 44.4 |
0.5%Ru/P25 | 48.3 | 0.26 | 21.5 |
1.0%Ru/P25 | 45.7 | 0.25 | 21.9 |
1.5%Ru/P25 | 49.7 | 0.28 | 22.6 |
2.0%Ru/P25 | 46.6 | 0.24 | 21.0 |
1.5%Ru/P25 (used)a | 46.8 | 0.23 | 21.2 |
Fig. 5 Conversion of CO2 (a), CH4 selectivity (b) and CO sele-c-tivity (c) over the 0.5%-2.0% Ru/P25 catalyst at different temperatures Reaction conditions: 0.3 g catalyst; H2: CO2=4: 1; T=350℃, P = 105 Pa
[1] | MIKKELSEN M, JORGENSEN M, KREBS F C.The teraton challenge. a review of fixation and transformation of carbon dioxide. Energy Environ. Sci., 2010, 3: 43-81. |
[2] | WANG W, WANG S P, MA X B, et al.Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev., 2011, 40(7): 3703-3727. |
[3] | DING M Y, YANG Y, WU B S, et al.Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer-Tropsch synthesis,J. Mol. Catal. A: Chem., 2009, 303: 65-71. |
[4] | KHODAKOV A Y, WEI C, PASCAL F.Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev., 2007, 107: 1692-1744. |
[5] | BORG Ø, ERI S, BLEKKAN E A, et al. Fischer-Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables. J. Catal., 2007, 248: 89-100. |
[6] | ZHAO G Y, ZHANG C H, QIN S D, et al.Effect of interaction between potassium and structural promoters on Fischer-Tropsch performance in iron-based catalysts. J. Mol. Catal. A: Chem., 2008, 286: 137-142. |
[7] | BORG Ø, HAMMER N, ERI S, et al. Fischer-Tropsch synthesis over un-promoted and Re-promotedg-Al2O3 supported cobalt catalysts with different pore sizes. Catal. Today, 2009, 142: 70-77. |
[8] | DORNER R W, HARDY D R, WILLIAMS F W, et al.K and Mn doped iron-based CO2 hydrogenation catalysts: detection of KAlH4 as part of the catalyst's active phase. Appl. Catal. A: General, 2010, 373: 112-121. |
[9] | HE XUE-ZHI, LI BING-JIE, WU ZHI-JIAN, et al. The preparation of layered double metals hydroxides Zn(Cu)/Al-LDHs and the photocatalytic reduction of CO2. J. Mol. Catal (China), 2013, 27(1): 70-75. |
[10] | KONG X Q, TANG X J, XU S, et al.Preparation CuO-ZnO/Al2O3 by Sol-Gel auto-combustion method and its catalytic property for methanol synthesis from CO2 hydrogen. J. Mol. Catal.(China), 2013, 27(2): 159-165. |
[11] | ZHANG Y J, DENG J L, ZHANG S J, et al.Investigation on CuO-ZnO-Al2O3/HZSM-5 catalyst for synthesis of dimethyl ether from CO2 hydrogen. J. Mol. Catal.(China), 2013, 27(3): 235-241. |
[12] | ROY S C, VARGHESE O K, PAULOSE M.Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 2010, 4(3): 1259-1278. |
[13] | DONG H Z, YIN X H, SUI D D, et al.Calculation of CO2 adsorption on SrTiO3(100) with density funcational theory. J. Mol. Catal.(China), 2012, 26(6): 554-559. |
[14] | XIE S J, WANG Y, ZHANG Q H.Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt-TiO2 in CH4 formation by addition of MgO. Chem. Commun., 2013, 49: 2451-2453. |
[15] | FUJISHIMA A, HONDA K.Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37-38. |
[16] | NOZIK A J.Photoelectrolysis of water using semiconducting TiO2 crystals. Nature, 1975, 257(5525): 383-386. |
[17] | INOUE T, FUJISHIMA A, KONISHI S.Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 1979, 277: 637-638. |
[18] | KONG D.Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Appl. Surf. Sci., 2013, 277: 105-110. |
[19] | ZHANG Q H, HAN W D, HONG Y J.Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catal. Today, 2009, 148: 335-340. |
[20] | THAMPI K R, KIWI J, GRATZEL M.Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature, 1987, 327: 506-508. |
[21] | LI X K, ZHUANG Z J, LI W. Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Appl. Catal. A: General, 2012, 429-430: 31-38. |
[22] | YU K P, YU W Y, KUO M C, et al.Pt/titania-nanotube: a potential catalyst for CO2 adsorption and hydrogenation. Appl. Catal. B: Environ., 2008, 84: 112-118. |
[23] | JACQUEMIN M, BEULS A, RUIZ P.Catalytic production of methane from CO2 and H2 at low temperature: insight on the reaction mechanism. Catal. Today, 2010, 157: 462-466. |
[24] | SCHILD C, WOKAUN A, BAIKER A.On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study Part II. Surface species on copper/zirconia catalysts: implications for methanol synthesis selectivity. J. Mol. Catal., 1990, 63: 243-254. |
[25] | LO C C, HUNG C H, YUAN C S.Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials & Solar Cells, 2007, 91: 1765-1774. |
[26] | DIMITRIJEVIC N M, VIJAYAN B K, POLUEKTOV O G.Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc., 2011, 133: 3964-3971. |
[27] | VARGHESE O K, PAULOS M, LATEMPA T J, et al.High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett., 2009, 9(2): 731-737. |
[28] | ABE T, TANIZAWA M, WATANABE K, et al.CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ. Sci., 2009, 2: 315-321. |
[29] | JIANG QI, ZHU ZHI-CHEN, HUANG ZHONG-TAO. The catalytic activity of supported Ru catalyst for the methanation of CO2. Journal of South China University of Technology (Natural Science), 1996, 24(12): 109-114. |
[30] | LI BO, LU GONG-XUAN. Cosensitized TiO2 with different dyes for water splitting to hydrogen under visible light—structural similarity of dyes and their dual promoting effect. J. Mol. Catal (China), 2013, 27(4): 181-191. |
[31] | WU YU-QI, LU GONG-XUAN, ZHOU QUAN, et al. Hydrogen production by Pt/TiO2 photocatalytic reforming of ethanol. J. Mol. Catal (China), 2004, 16(2): 101-106. |
[32] | ZHEN WEN-LONG, LI BO, LU GONG XUAN, et al. Enhancing catalytic activity and stability for CO2 methanation on Ni-Ru/γ-Al2O3 via modulating impregnation sequence and controlling surface active species. RSC Adv., 2014, 4: 16472-16479. |
[33] | ELMASIDES C, KONDARIDES D I, GRULNERT W, et al.XPS and FTIR study of Ru/Al2O3 and Ru/TiO2 catalysts: reduction characteristics and interaction with a methane-oxygen mixture. J. Phys. Chem. B., 1999, 103: 5227-5239. |
[34] | ZHAI Q G, XIE S J, FAN W Q.Photocatalytic conversion of carbon dioxide with water into methane: Platinum and Copper(I) Oxide co-catalysts with a core-Shell structure. Angew. Chem. Int. Ed., 2013, 52: 5776-5779. |
[35] | FRESE K W, LEACH S.Electrochemical reduction of carbon dioxide to methane, methanol, and CO on Ru electrodes. J. Electrochem. Soc., 1985, 132: 259-260. |
[36] | WISE H, MCCARTHY J G.Thermodynamic properties of surface carbon on Ruthenium. Surface Sci., 1983, 133: 311-320. |
[37] | SOLYMOSI F, ERDOHELYI A, KOCSIS M.Methanation of CO2 on supported Ru catalysts. J. Chem. Soc., Faraday Trans., 1981, 77(1): 1003-1012. |
[38] | PRAIRIE M R, RENKEN A, HIGHFIELD J G, et al.A fourier transform infrared spectroscopic study of CO2 methanation on supported ruthenium. J. Catal., 1991, 129(1): 130-144. |
[39] | MICHEL MARWOOD, RALF DOEPPER, ALBERT RENKEN. In-situ surface and gas phase analysis for kinetic studies under transient conditions The catalytic hydrogenation of CO2. Appl. Catal. A: General., 1997, 151: 223-246. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | WEI Zhifan, CHEN Guoqing, ZU Yufei, LIU Yuan, LI Minghao, FU Xuesong, ZHOU Wenlong. ZrB2-HfSi2 Ceramics: Microstructure and Formation Mechanism of Core-rim Structure [J]. Journal of Inorganic Materials, 2025, 40(7): 817-825. |
[3] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | ZHOU Yangyang, ZHANG Yanyan, YU Ziyi, FU Zhengqian, XU Fangfang, LIANG Ruihong, ZHOU Zhiyong. Enhancement of Piezoelectric Properties in CaBi4Ti4O15-based Ceramics through Bi3+ Self-doping Strategy [J]. Journal of Inorganic Materials, 2025, 40(6): 719-728. |
[6] | HUANG Zipeng, JIA Wenxiao, LI Lingxia. Crystal Structure and Terahertz Dielectric Properties of (Ti0.5W0.5)5+ Doped MgNb2O6 Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 647-655. |
[7] | CHEN Libo, SHENG Ying, WU Ming, SONG Jiling, JIAN Jian, SONG Erhong. Na and O Co-doped Carbon Nitride for Efficient Photocatalytic Hydrogen Evolution [J]. Journal of Inorganic Materials, 2025, 40(5): 552-562. |
[8] | ZHAO Kaixuan, LIU Wenpeng, DING Shoujun, DOU Renqin, LUO Jianqiao, GAO Jinyun, SUN Guihua, REN Hao, ZHANG Qingli. Nd:YLF Crystal Growth: Raw Materials Preparation by Melting Method and Property [J]. Journal of Inorganic Materials, 2025, 40(5): 529-535. |
[9] | GUO Ziyu, ZHU Yunzhou, WANG Li, CHEN Jian, LI Hong, HUANG Zhengren. Effect of Zn2+ Catalyst on Microporous Structure of Porous Carbon Prepared from Phenolic Resin/Ethylene Glycol [J]. Journal of Inorganic Materials, 2025, 40(5): 466-472. |
[10] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[11] | HONG Peiping, LIANG Long, WU Lian, MA Yingkang, PANG Hao. Structure Regulation of ZIF-67 and Adsorption Properties for Chlortetracycline Hydrochloride [J]. Journal of Inorganic Materials, 2025, 40(4): 388-396. |
[12] | XIN Zhenyu, GUO Ruihua, WUREN Tuoya, WANG Yan, AN Shengli, ZHANG Guofang, GUAN Lili. Pt-Fe/GO Nanocatalysts: Preparation and Electrocatalytic Performance on Ethanol Oxidation [J]. Journal of Inorganic Materials, 2025, 40(4): 379-387. |
[13] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[14] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[15] | BAO Weichao, GUO Xiaojie, XIN Xiaoting, PENG Pai, WANG Xingang, LIU Jixuan, ZHANG Guojun, XU Fangfang. Establishment of Symbiotic Structure with Metal Atomic-layer Phase-separation in Carbide Ceramics [J]. Journal of Inorganic Materials, 2025, 40(1): 17-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||