Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (4): 423-431.DOI: 10.15541/jim20230486
Special Issue: 【信息功能】电介质储能材料(202506); 【信息功能】介电、铁电、压电材料(202506)
• RESEARCH ARTICLE • Previous Articles Next Articles
					
													SHI Ruijian(
), LEI Junwei, ZHANG Yi, XIE Aiwen(
), ZUO Ruzhong(
)
												  
						
						
						
					
				
Received:2023-10-20
															
							
																	Revised:2023-12-10
															
							
															
							
																	Published:2024-04-20
															
							
																	Online:2024-01-08
															
						About author:SHI Ruijian (1998-), male, Master candidate. E-mail: 1092348993@qq.com				
													Supported by:CLC Number:
SHI Ruijian, LEI Junwei, ZHANG Yi, XIE Aiwen, ZUO Ruzhong. Linear-like NaNbO3-based Lead-free Relaxor Antiferroelectric Ceramics with Excellent Energy-storage and Charge-discharge Properties[J]. Journal of Inorganic Materials, 2024, 39(4): 423-431.
																													Fig. 2 Rietveld refinement results of XRD patterns for (0.76-x)NN-0.24BNT-xBMT ceramics with different compositions (a) x=0; (b) x=0.025; (c) x=0.050; (d) x=0.075
| x | Space group | Lattice parameters | V/nm3 | Rwp/% | Rp/% | χ2 | 
|---|---|---|---|---|---|---|
| 0 | Pnma | a=0.77920 nm, b=0.77852 nm, c=2.33854 nm, α=β=γ=90o | 1.418608 | 5.35 | 3.70 | 3.62 | 
| 0.025 | Pnma | a=0.77965 nm, b=0.77897 nm, c=2.34045 nm, α=β=γ=90o | 1.421413 | 5.20 | 3.62 | 3.59 | 
| 0.050 | Pnma | a=0.77899 nm, b=0.77995 nm, c=2.33913 nm, α=β=γ=90o | 1.421193 | 6.27 | 4.05 | 4.17 | 
| 0.075 | Pnma | a=0.78060 nm, b=0.78000 nm, c=2.34481 nm, α=β=γ=90o | 1.427666 | 4.99 | 3.56 | 2.96 | 
Table 1 Refined structural parameters of full spectrum fitting for (0.76-x)NN-0.24BNT-xBMT ceramics
| x | Space group | Lattice parameters | V/nm3 | Rwp/% | Rp/% | χ2 | 
|---|---|---|---|---|---|---|
| 0 | Pnma | a=0.77920 nm, b=0.77852 nm, c=2.33854 nm, α=β=γ=90o | 1.418608 | 5.35 | 3.70 | 3.62 | 
| 0.025 | Pnma | a=0.77965 nm, b=0.77897 nm, c=2.34045 nm, α=β=γ=90o | 1.421413 | 5.20 | 3.62 | 3.59 | 
| 0.050 | Pnma | a=0.77899 nm, b=0.77995 nm, c=2.33913 nm, α=β=γ=90o | 1.421193 | 6.27 | 4.05 | 4.17 | 
| 0.075 | Pnma | a=0.78060 nm, b=0.78000 nm, c=2.34481 nm, α=β=γ=90o | 1.427666 | 4.99 | 3.56 | 2.96 | 
																													Fig. 7 Energy-storage properties of (0.76-x)NN-0.24BNT-xBMT ceramics (a, b) P-E hysteresis loops (a) and energy-storage performance (b) of different compositions measured at 20 kV/mm; (c, d) P-E hysteresis loops (c) and energy-storage performance (d) of the x=0.050 ceramic measured under different electric fields
																													Fig. 8 Electric field-dependent charge-discharge characteristics of (0.76-x)NN-0.24BNT-xBMT (x=0.050) ceramics (a, b) Overdamped discharging current curves (a) and WD versus time curves (b) of the x=0.050 ceramic under different electric fields; (c, d) Underdamped discharging curves (c) and variation of PD, WD, and t0.9 (d) of the x=0.050 ceramics
																													Fig. 9 Temperature-dependent charge-discharge characteristics of (0.76-x)NN-0.24BNT-xBMT (x=0.050) ceramics (a, b) Overdamped discharging current curves (a) and WD versus time curves (b) of the x=0.050 ceramic under different electric fields; (c, d) Underdamped discharging curves (c) and variation of PD, WD, and t0.9 (d) of the x=0.050 ceramics
| [1] |  
											 LIU Z, LU T, YE J M, et al. Antiferroelectrics for energy storage applications: a review. Advanced Materials Technologies, 2018,  3(9): 1800111. 
																							 DOI URL  | 
										
| [2] |  
											 YANG L T, KONG X, LI F, et al. Perovskite lead-free dielectrics for energy storage applications. Progress in Materials Science, 2019,  102: 72. 
																							 DOI  | 
										
| [3] |  
											 WANG G, LU Z L, LI Y, et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chemical Reviews, 2021,  121(10): 6124. 
																							 DOI URL  | 
										
| [4] |  
											 WANG H S, LIU Y C, YANG T Q, et al. Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Advanced Functional Materials, 2019,  29(7): 1807321. 
																							 DOI URL  | 
										
| [5] |  
											 QI H, ZUO R Z, XIE A W, et al. Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Advanced Functional Materials, 2019,  29(35): 1903877. 
																							 DOI URL  | 
										
| [6] |  
											 WANG X C, SHEN J, YANG T Q, et al. High energy-storage performance and dielectric properties of antiferroelectric (Pb0.97La0.02) (Zr0.5Sn0.5-xTix)O3 ceramic. Journal of Alloys and Compounds, 2016,  655: 309. 
																							 DOI URL  | 
										
| [7] |  
											 ZHANG Q F, TONG H F, CHEN J, et al. High recoverable energy density over a wide temperature range in Sr modified (Pb,La) (Zr,Sn,Ti)O3 antiferroelectric ceramics with an orthorhombic phase. Applied Physical Letters, 2016,  109(26): 262901. 
																							 DOI URL  | 
										
| [8] |  
											 TIAN Y, JIN L, ZHANG H F, et al. Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. Journal of Materials Chemistry A, 2017,  5(33): 17525. 
																							 DOI URL  | 
										
| [9] |  
											 LI J L, LI F, XU Z, et al. Multilayer lead‐free ceramic capacitors with ultrahigh energy density and efficiency. Advanced Materials, 2018,  30(32): 1802155. 
																							 DOI URL  | 
										
| [10] |  
											 LI S, HU T F, NIE H C, et al. Giant energy density and high efficiency achieved in silver niobate-based lead-free antiferroelectric ceramic capacitors via domain engineering. Energy Storage Materials, 2021,  34: 417. 
																							 DOI URL  | 
										
| [11] |  
											 TIAN A, ZUO R Z, QI H, et al. Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. Journal of Materials Chemistry A, 2020,  8(17): 8352. 
																							 DOI URL  | 
										
| [12] |  
											 DARLINGTON C N W, KNIGHT K S. On the lattice parameters of sodium niobate at room temperature and above. Physica B, 1999,  266(4): 368. 
																							 DOI URL  | 
										
| [13] |  
											 QI H, XIE A W, FU J, et al. Emerging antiferroelectric phases with fascinating dielectric, polarization and strain response in NaNbO3-(Bi0.5Na0.5)TiO3 lead-free binary system. Acta Materialia, 2021,  208: 116710. 
																							 DOI URL  | 
										
| [14] |  
											 SHIMIZU H, GUO H Z, REYES-LILLO S E, et al. Lead-free antiferroelectric: xCaZrO3-(1-x)NaNbO3 system (0≤x≤0.10). Dalton Transactions, 2015,  44(23): 10763. 
																							 DOI URL  | 
										
| [15] |  
											 YE J M, WANG G S, CHEN X F, et al. Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1-x)NaNbO3-xCaSnO3 ceramics. Applied Physical Letter, 2019,  114(12): 122901. 
																							 DOI URL  | 
										
| [16] |  
											 ZENG J T, KWOK K W, CHAN H L W. Ferroelectric and piezoelectric properties of Na1-xBaxNb1-xTixO3 ceramics. Journal of the American Ceramic Society, 2006,  89(9): 2828. 
																							 DOI URL  | 
										
| [17] |  
											 DOU M X, FU J, ZUO R Z. Electric field induced phase transition and accompanying giant poling strain in lead-free NaNbO3-BaZrO3 ceramics. Journal of the European Ceramic Society, 2018,  38(9): 3104. 
																							 DOI URL  | 
										
| [18] |  
											 LIU Z Y, LU J S, MAO Y Q, et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases. Journal of the European Ceramic Society, 2018,  38(15): 4939. 
																							 DOI URL  | 
										
| [19] |  
											 QIAO Z L, LI T Y, QI H, et al. Excellent energy storage properties in NaNbO3-based lead-free ceramics by modulating antiferrodistortive of P phase. Journal of Alloys and Compounds, 2022,  898: 162934. 
																							 DOI URL  | 
										
| [20] |  
											 XIE A W, QI H, ZUO R Z, et al. An environmentally-benign NaNbO3 based perovskite antiferroelectric alternative to traditional lead-based counterparts. Journal of Materials Chemistry C, 2019,  7(48): 15153. 
																							 DOI URL  | 
										
| [21] |  
											 SCHÜTZ D, DELUCA M, KRAUSS W, et al. Lone-pair-induced covalency as the cause of temperature-and field-induced instabilities in bismuth sodium titanate. Advanced Functional Materials, 2012,  22(11): 2285. 
																							 DOI URL  | 
										
| [22] | SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A, 1976, 32(5): 751. | 
| [23] |  
											 WEIBULL W. A statistical distribution function of wide applicability. Journal of Applied Mechanics, 1951,  18(3): 293. 
																							 DOI URL  | 
										
| [24] |  
											 TUNKASIRI T, RUJIJANAGUL G. Dielectric strength of fine grained barium titanate ceramics. Journal of Materials Science Letters, 1996,  15(20): 1767. 
																							 DOI URL  | 
										
| [1] | SHEN Hao, CHEN Qianqian, ZHOU Boxiang, TANG Xiaodong, ZHANG Yuanyuan. Preparation and Energy Storage Properties of A-site La/Sr Co-doped PbZrO3 Thin Films [J]. Journal of Inorganic Materials, 2024, 39(9): 1022-1028. | 
| [2] | YE Fen, JIANG Xiangping, CHEN Yunjing, HUANG Xiaokun, ZENG Renfen, CHEN Chao, NIE Xin, CHENG Hao. Dielectric and Energy Storage Property of (0.96NaNbO3-0.04CaZrO3)-xFe2O3 Antiferroelectric Ceramics [J]. Journal of Inorganic Materials, 2022, 37(5): 499-506. | 
| [3] | WU Ming, XIAO Yanan, LI Huaqiang, LIU Yongbin, GAO Jinghui, ZHONG Lisheng, LOU Xiaojie. Negative Electrocaloric Effects in Antiferroelectric Materials: a Review [J]. Journal of Inorganic Materials, 2022, 37(4): 376-386. | 
| [4] | DU Hong-Liang, YANG Ze-Tian, GAO Feng, JIN Li, CHENG Hua-Lei, QU Shao-Bo. Lead-free Nonlinear Dielectric Ceramics for Energy Storage Applications: Current Status and Challenges [J]. Journal of Inorganic Materials, 2018, 33(10): 1046-1058. | 
| [5] | WEI Yong-Xing, JIN Chang-Qing, ZENG Yi-Ming. Progress of Relaxor Multiferroic Materials [J]. Journal of Inorganic Materials, 2017, 32(10): 1009-1017. | 
| [6] | CHENG Hua-Lei, DU Hong-Liang, ZHOU Wan-Cheng, LUO Fa, ZHU Dong-Mei. Effects of LaFeO3 Additions on the Dielectric and Ferroelectric Properties of (K0.5Na0.5)NbO3 Ceramics [J]. Journal of Inorganic Materials, 2012, 27(11): 1228-1232. | 
| [7] | LI Yue-Ming,CHEN Wen,XU Qing,ZHOU Jing,LIAO Mei-Song. Dielectric and Piezoelectric Properties of (Na0.8K0.2)0.5Bi0.5TiO3 Ceramics [J]. Journal of Inorganic Materials, 2004, 19(4): 817-822. | 
| [8] | CHEN Ming,YAO Xi,ZHANG Liang-Ying. Preparation of Lead Lanthanum Zirconate Titanate Stannate Ceramics by Partial Chemical Method and Its Electric Field Induced Strain [J]. Journal of Inorganic Materials, 2002, 17(3): 515-520. | 
| [9] | YANG Tong-Qing,YAO Xi,ZHANG Liang-Ying. Effects of Compositional Variations on Antiferroelectric-Ferroelectric Phase Transition of PZST Ceramics [J]. Journal of Inorganic Materials, 2000, 15(5): 807-814. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||