Journal of Inorganic Materials ›› 2017, Vol. 32 ›› Issue (10): 1009-1017.DOI: 10.15541/jim20160644
• Orginal Article • Next Articles
WEI Yong-Xing1, JIN Chang-Qing1, ZENG Yi-Ming2
Received:
2016-11-25
Revised:
2017-01-09
Published:
2017-10-20
Online:
2017-09-21
Supported by:
CLC Number:
WEI Yong-Xing, JIN Chang-Qing, ZENG Yi-Ming. Progress of Relaxor Multiferroic Materials[J]. Journal of Inorganic Materials, 2017, 32(10): 1009-1017.
Fig. 1 Temperature dependence of dielectric constant for classical relaxor ferroelectrics Pb(Nb2/3Mg1/3)O3 at various frequencies[13]The classical relaxor ferroelectrics display the broad, frequency-dependent dielectric anomalies. The value of the maximum dielectric constant εm could reach above 10,000. The relation between the Tm and frequency could be described by V-F function
Fig. 2 Schematic representation of paramagnetic state, long- ranged magnetic state (ferromagnetic, ferrimagnetic, antiferromagnetic) and spin glass state
Compositions | Polar ordering | Magnetic ordering |
---|---|---|
PbFe2/3W1/3O3 crystals[ | Ferroelectric relaxor Tm = 210 K @0.1 MHz Tf = 164 K | Anti-ferromagnetic TN = 350 K Magnetic glass state Tg = 10 K |
PbFe0.5Nb0.5O3 ceramics[ | Ferroelectric Tm =373 K | Anti-ferromagnetic TN = 153 K Magnetic glass state Tg = 10.6 K |
PbFe0.5Ta0.5O3 ceramics[ | Ferroelectric Tm = 259 K | Anti-ferromagnetic TN = 153 K Magnetic glass state Tg < 10 K |
0.8PbFe1/2Nb1/2O3-0.2PbMg1/2W1/2O3 ceramics[ | Ferroelectric relaxor Tm = 280 K @0.1 MHz Tf = 245 K | Magnetic glass state Tg = 25K |
Pb(Fe0.66W0.33)0.8 Ti0.2O3 thin films[ | Ferroelectric relaxor Tm = 350 K @10 kHz Tf = 238 K | Ferrimagnetic |
Pb(Fe0.66W0.33)0.2 (Zr0.53Ti0.47)0.8O3 thin film[ | Ferroelectric relaxor Tm < 600 K @1 MHz | Ferrimagnetic |
Pb(Zr0.53Ti0.47)0.60 (Fe0.5Ta0.5)0.4O3 thin films[ | Ferroelectric relaxor Tm = 390 K @1 MHz Tf = 305 K | Ferrimagnetic |
Table 1 Polar and magnetic orderings of the PbB1B2O3 based multiferroic materials
Compositions | Polar ordering | Magnetic ordering |
---|---|---|
PbFe2/3W1/3O3 crystals[ | Ferroelectric relaxor Tm = 210 K @0.1 MHz Tf = 164 K | Anti-ferromagnetic TN = 350 K Magnetic glass state Tg = 10 K |
PbFe0.5Nb0.5O3 ceramics[ | Ferroelectric Tm =373 K | Anti-ferromagnetic TN = 153 K Magnetic glass state Tg = 10.6 K |
PbFe0.5Ta0.5O3 ceramics[ | Ferroelectric Tm = 259 K | Anti-ferromagnetic TN = 153 K Magnetic glass state Tg < 10 K |
0.8PbFe1/2Nb1/2O3-0.2PbMg1/2W1/2O3 ceramics[ | Ferroelectric relaxor Tm = 280 K @0.1 MHz Tf = 245 K | Magnetic glass state Tg = 25K |
Pb(Fe0.66W0.33)0.8 Ti0.2O3 thin films[ | Ferroelectric relaxor Tm = 350 K @10 kHz Tf = 238 K | Ferrimagnetic |
Pb(Fe0.66W0.33)0.2 (Zr0.53Ti0.47)0.8O3 thin film[ | Ferroelectric relaxor Tm < 600 K @1 MHz | Ferrimagnetic |
Pb(Zr0.53Ti0.47)0.60 (Fe0.5Ta0.5)0.4O3 thin films[ | Ferroelectric relaxor Tm = 390 K @1 MHz Tf = 305 K | Ferrimagnetic |
Compositions | Polar ordering | Magnetic ordering |
---|---|---|
Bi(Fe0.5Mn0.5)O3 thin films[ | Ferroelectric relaxor Tm = 440 K @1 MHz Tf = 314 K | Magnetic glass state Tf2 =122 K |
0.65BiFeO3- 0.35BaTiO3 ceramics[ | Ferroelectric relaxor Tm = 687 K @1 MHz | Ferrimagnetic |
0.67BiFeO3- 0.33BaTiO3 single crystal[ | Ferroelectric relaxor Tm = 650 K @0.1 MHz | Magnetic glass state |
0.5Bi(Fe0.5La0.5)O3- 0.5PbTiO3 ceramics[ | Ferroelectric relaxor Tm = 520 K @0.1 MHz | Ferrimagnetic |
0.6BiFeO3- 0.4Bi1/2K1/2TiO3 ceramics[ | Ferroelectric relaxor Tm = 703 K @0.1 MHz | Ferrimagnetic TN < 500 K |
0.4BiFe0.9Co0.1O3- 0.6Bi1/2K1/2TiO3 ceramics[ | Ferroelectric relaxor Tm = 693 K @0.1 MHz Tf < 573 K | Ferrimagnetic TN = 670 K |
Table 2 Polar and magnetic orderings of the BiFeO3 based multiferroic materials
Compositions | Polar ordering | Magnetic ordering |
---|---|---|
Bi(Fe0.5Mn0.5)O3 thin films[ | Ferroelectric relaxor Tm = 440 K @1 MHz Tf = 314 K | Magnetic glass state Tf2 =122 K |
0.65BiFeO3- 0.35BaTiO3 ceramics[ | Ferroelectric relaxor Tm = 687 K @1 MHz | Ferrimagnetic |
0.67BiFeO3- 0.33BaTiO3 single crystal[ | Ferroelectric relaxor Tm = 650 K @0.1 MHz | Magnetic glass state |
0.5Bi(Fe0.5La0.5)O3- 0.5PbTiO3 ceramics[ | Ferroelectric relaxor Tm = 520 K @0.1 MHz | Ferrimagnetic |
0.6BiFeO3- 0.4Bi1/2K1/2TiO3 ceramics[ | Ferroelectric relaxor Tm = 703 K @0.1 MHz | Ferrimagnetic TN < 500 K |
0.4BiFe0.9Co0.1O3- 0.6Bi1/2K1/2TiO3 ceramics[ | Ferroelectric relaxor Tm = 693 K @0.1 MHz Tf < 573 K | Ferrimagnetic TN = 670 K |
Fig. 4 (a) The P-E loops and (b) the real and imaginary part of dielectric constant as a function of frequencies with various magnetic fields for Pb(Fe0.66 W0.33)0.2(Zr0.53Ti0.47)0.8O3[35]Increase of the magnetic field H leads to decrease in Pr. Pr is nearly zero when H reaches 0.5 T. This effect disappears after magnetic field being removed. Correspondingly, the anomaly peak of the imaginary part for dielectric constant shifts to the low frequency side with H increasing, which reveals the increase of the relaxation time
Fig. 6 (a) Contour plots of the diffuse intensities at 600 K around the (112) reflection and (b) M-H loops at various temperatures for the single crystal of 0.67BiFeO3-0.33BaTiO3[50] The crystal shows the strong nuclear diffuse scattering, with a correlation length of 8 nm. It demonstrates the existence of the PNR. The M-H loops display the character of super-paramagnetism. The super-paramagnetism could be related to the short magnetic state. The fitting of Langevin function reveals the size of the short magnetic state is in the range of 8-9 nm
Fig. 8 (a) Crystal structure, (b) STEM pattern and (c) schematic illustration of atom position information of Bi5Ti3FeO15[68-69]The crystal structure is obtained from ref [68]. Between the two [Bi2O2]2- layers, there are four Ti(Fe)O6 octahedra. The STEM measurement demonstrates Ti/Fe atoms shift from ideal position along [110]
[1] | EERENSTEIN W, MATHUR N D, SCOTT J F.Multiferroic and magnetoelectric materials.Nature, 2006, 442(44): 759-765. |
[2] | SCOTT J F.Data storage. Multiferroic memories.Nature, 2007, 6(4): 256-257. |
[3] | SPALDIN N A, FIEBIG M.The renaissance of magnetoelectric multiferroics.Science, 2005, 309(5733): 391-392. |
[4] | NAN C W.Research progress and future directions of multiferroic materials.Scientia Sinica Technologica, 2015, 45(4): 339-357. |
[5] | WANG J, NEATON J B, ZHENG H, et al.Epitaxial BiFeO3 multiferroic thin film heterostructures.Science, 2003, 299(5673): 1719-1722. |
[6] | KLMURA T, GOTO T, SHINTAL H, et al.Magnetic control of ferroelectric polarization.Nature, 2003, 426(6962): 55-58. |
[7] | LIU J M, NAN C W.Decade of multiferroic researches.Physics, 2014, 43(02): 88-98. |
[8] | WANG K F, LIU J M, WANG Y.Single phase multiferroic materials- coupling and adjusting between polar and magnetic order parameters.Chin. Sci. Bull, 2008, 53(10): 1098-1135. |
[9] | CHI Z H, JIN C Q.Recent advances in single-phase magnetoelectric multiferroics.Prog. Phys., 2007, 27(2): 225-238. |
[10] | DUAN C G.Progress in the study of magnetoelectric effect.Prog. Phys., 2009, 29(3): 215-238. |
[11] | DONG S, LIU J M.Multiferroic materials: past, present and future.Physics, 2010, 39(10): 714-715. |
[12] | PIRC R, BLINC R, SCOTT J F.Mesoscopic model of a system possessing both relaxor ferroelectric and relaxor ferromagnetic properties.Phys. Rev. B, 2009, 79(21): 214114. |
[13] | BOKOV A A, YE Z G.Recent progress in relaxor ferroelectrics with perovskite structure.J. Mater. Sci., 2006, 41(1): 31-52. |
[14] | YAO X, CHEN Z L, CROSS L E.Polarization and depolarization behavior of hot pressed lead lanthanum zirconate titanate ceramics,J. Appl. Phys., 1983, 54(6): 3399-3403. |
[15] | CROSS L E.Relaxor ferroelectrics.Ferroelectrics, 1987, 76(1): 241-267. |
[16] | SETTER N, CROSS L E.The contribution of structural disorder to diffuse phase transitions in ferroelectrics.J. Mater. Sci., 1980, 15(10): 2478-2482. |
[17] | TAGANTSEV A K.Vogel-Fulcher relationship for the dielectric permittivity of relaxor ferroelectrics.Phys. Rev. Lett., 1994, 72(7): 1110-1113. |
[18] | KIMURA T, TOMIOKA Y, KUMAI R, et al.Diffuse phase separation and phase transition in Cr-doped Nd1/2Ca1/2MnO3: A relaxor ferromagnet.Phys. Rev. Lett., 1999, 83(19): 3940-3943. |
[19] | OKIMOTO Y, OGIMOTO Y, Matsubara M, et al.Direct observation of photoinduced magnetization in a relaxor ferromagnet.Appl. Phys. Lett., 2002, 80(6): 1031-1033. |
[20] | KAMZIN A S, BOKOV V A.Mössbauer studies of PbFe2/3W1/3O3 multiferroics.Phys. Solid State, 2013, 55(6): 1191-1197. |
[21] | MITOSERIU L, CARNASCIALI M M, PIAGGIO P, et al.Evidence of the relaxor-paraelectric phase transition in Pb(Fe2/3 W1/3)O3 ceramics.Appl. Phys. Lett., 2002, 81(26): 5006-5008. |
[22] | YE Z, TODA K, SATO M, et al.Synthesis, structure and properties of the magnetic relaxor ferroelectric Pb(Fe2/3W1/3)O3 [PFW].J. Korean Phys. Soc., 1998, 32(3): S1028-S1031 . |
[23] | PAVLENKO A V, TURIKA A V, Reznichenko L A, et al.Dielectric relaxation in the PbFe1/2Nb1/2O3 ceramics.Phys. Solid State, 2011, 53(9): 1872-1875. |
[24] | CARPENTER M A, SCHIEMER J A, LASCU I, et al.Elastic and magnetoelastic relaxation behaviour of multiferroic (ferromagnetic + ferroelectric + ferroelastic) Pb(Fe0.5Nb0.5)O3 perovskite.J. Phys.: Condens. Matter, 2015, 27(28): 285901. |
[25] | BOCHENEK D, GUZDEK P.Ferroelectric and magnetic properties of ferroelectromagnetic PbFe1/2Nb1/2O3 type ceramics.J. Magn. Magn. Mater., 2011, 323(3): 369-374. |
[26] | LAMPIS N, SCIAU P, LEHMANN A G.Rietveld refinements of the paraelectric and ferroelectric structures of PbFe0.5Ta0.5O3.J. Phys.: Condens. Matter, 2000, 12(17): 2367-2378. |
[27] | DULKIN E, GRUSZKA I, KANIA A, et al.Electric field dependences of Curie and Néel phase transition temperatures in magnetoelectric relaxor multiferroic Pb(Fe0.5Ta0.5)O3 crystals seen via acoustic emission.Phys. Status Solidi B, 2016, 253(4): 738-743. |
[28] | FALQUI A, LAMPIS N, GEDDOLEHMANN A, et al.Low- temperature magnetic behavior of perovskite compounds PbFe1/2Ta1/2O3 and PbFe1/2Nb1/2O3.J. Phys. Chem. B, 2005, 109(48): 22967-22970. |
[29] | KLEEMANN W, SHVARTSMAN V V, BORISOV P, et al.Coexistence of antiferromagnetic and spin cluster glass order in the magnetoelectric relaxor multiferroic PbFe0.5Nb0.5O3.Phys. Rev. Lett., 2010, 105(25): 257202. |
[30] | CHILLAL S, GVASALIYA S N, ZHELUDEV A, et al.Magnetic short-and long-range order in PbFe0.5Ta0.5O3.Phys. Rev. B, 2014, 89(17): 174418. |
[31] | CHEN L, BOKOV A A, ZHU W M, et al.Magnetoelectric relaxor and reentrant behaviours in multiferroic Pb(Fe2/3W1/3)O3 crystal.Sci. Rep., 2016, 6: 22327. |
[32] | LEVSTIK A, BOBNAR V, FILIPIČ C, et al.Magnetoelectric relaxor.Appl. Phys. Lett., 2007, 91(1): 012905. |
[33] | KUMAR A, RIVERA I, KATIYAR R S, et al.Multiferroic Pb(Fe0.66W0.33)0.80Ti0.20O3 thin films: a room-temperature relaxor ferroelectric and weak ferromagnetic.Appl. Phys. Lett., 2008, 92(13): 132913. |
[34] | CHENG Z X, WANG X L, ALVAREV G, et al. Magnetic glassy behavior in ferroelectric relaxor type solid solutions: magnetoelectric relaxor. J. Appl. Phys., 2009, 105(7): 07D902. |
[35] | KUMAR A, SHARMA G L, KATIYAR R S, et al.Magnetic control of large room-temperature polarization.J. Phys.: Condens. Matter, 2009, 21(38): 382204. |
[36] | KUMAR A, KATIYAR R S, SCOTT J F, et al.Fabrication and characterization of the multiferroic birelaxor lead-iron-tungstate/ lead-zirconate-titanate.J. Appl. Phys., 2010, 108(6): 064105. |
[37] | SANCHEZ D A, KUMAR A, ORTEGA N, et al.Near-room temperature relaxor multiferroic. Appl. Phys. Lett., 2010, 97(20): 202910. |
[38] | KEMPA M, KAMBA S, SAVINOV M, et al.Bulk dielectric and magnetic properties of PFW? PZT ceramics: absence of magnetically switched-off polarization.J. Phys.: Condens. Matter, 2010, 22(44): 445902. |
[39] | CATALAN G, SCOTT J F.Physics and application of bismuth ferrite.Adv. Mater., 2009, 21: 2463-2485. |
[40] | PALEWICZ A, PRZENIOSLO R, SOSNOWSKA I, et al.Atomic displacements in BiFeO3 as a function of temperature: neutron diffraction study. Acta Crystallogr. B, 2007, 63(4): 537-544. |
[41] | NEATON J, EDERER C, WAGHMARE U, et al.First-principles study of spontaneous polarization in multiferroic BiFeO3.Phys. Rev. B, 2005, 71(1): 014113. |
[42] | LEBEUGLE D, COLSON D, FORGET A, et al.Room-temperature coexistence of large electric polarization and magnetic order in BiFeO3 single crystals.Phys. Rev. B, 2007, 76(2): 024116. |
[43] | ZHANG ST, LU M H, WU D, et al.Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure.Appl. Phys. Lett, 2005, 87(26): 262907. |
[44] | ARNOLD D C, KNIGHT K S, CATALAN G, et al.The β-to-γ transition in BiFeO3: a powder neutron diffraction study.Adv. Fun. Mater., 2010, 20(13): 2116-2123. |
[45] | MIAO J, ZHANG X, ZHAN Q, et al.Bi-relaxation behaviors in epitaxial multiferroic double-perovskite BiFe0.5Mn0.5O3/CaRuO3 heterostructures.Appl. Phys. Lett., 2011, 99(6): 062905. |
[46] | WEI Y X, WANG X T, ZHU J T, et al.Dielectric, ferroelectric and piezoelectric properties of BiFeO3-BaTiO3 ceramics.J. Am. Ceram. Soc., 2013, 96(10): 3163-3168. |
[47] | WEI Y X, WANG X T, JIA J J, et al.Multiferroic and piezoelectric properties of 0.65BiFeO3-0.35BaTiO3 ceramic with pseudo-cubic symmetry.Ceram. Int., 2013, 38(4): 3499-3502. |
[48] | VERMA K C, KOTNALA R K.Multiferroic magnetoelectric coupling and relaxor ferroelectric behavior in 0.7BiFeO3- 0.3BaTiO3 nanocrystals.Solid State Commun., 2011, 151(13): 920-923. |
[49] | OZAKI T, KITAGAWA S, NISHIHARA S, et al.Ferroelectric properties and nano-scaled domain structures in (1-x)BiFeO3- xBaTiO3 (0.33 < x < 0.50).Ferroelectrics, 2009, 385: 155-161. |
[50] | SODA M, MATSUURA M, WAKABAYASHI W, et al.Superparamagnetism induced by polar nanoregions in relaxor ferroelectric (1-x)BiFeO3-xBaTiO3. J. Phys. Soc. Jpn., 2011, 80(4): 043705. |
[51] | BHATTACHAEJEE S, TRIPATHI S, PANDEY D.Morphotropic phase boundary in (1-x)BiFeO3-xPbTiO3: phase coexistence region and unusually large tetragonality.Appl. Phys. Lett., 2007, 91(4): 042903. |
[52] | ZHU W M, GUO H Y, YE Z G.Structural and magnetic characterization of multiferroic (BiFeO3)(1-x)(PbTiO3)x solid solutions.Phys. Rev. B, 2008, 78(1): 014401. |
[53] | AMORÍN H, CORREAS C, RAMOS P, et al. Very high remnant polarization and phase-change electromechanical response of BiFeO3-PbTiO3 at the multiferroic morphotropic phase boundary.Appl. Phys. Lett., 2012, 101(17): 172908. |
[54] | SINGH A, GUPTA A, CHATTERJEE R.Enhanced magnetoelectric coefficient(α) in the modified BiFeO3-PbTiO3 system with large La substitution. Appl. Phys. Lett., 2008, 93(2): 022902. |
[55] | MATSUO H, NOGUCHI Y, MIYAYAMA M, et al.Structural and piezoelectric properties of high-density (Bi0.5K0.5)TiO3-BiFeO3 ceramics.J. Appl. Phys., 2010, 108(10): 104103. |
[56] | BENNETT J, BELL A J, STEVENSON T, et al.Multiferroic properties of BiFeO3-(K0.5Bi0.5)TiO3 ceramics.Mater. Lett., 2013, 94(3): 172-175. |
[57] | MOROZOV M I, EINARSRUD M, GRANDE T.Polarization and strain response in Bi0.5K0.5TiO3-BiFeO3 ceramics.Appl. Phys. Lett., 2012, 101(25): 252904. |
[58] | DORCET V, MARCHET P, TROLLIARD G, et al.Structural and dielectric studies of the Na0.5Bi0.5TiO3-BiFeO3 system.J. Eur. Ceram. Soc., 2007, 27(13/14/15): 4371-4374. |
[59] | RAMANA E V, SURYANARAYANA S V, SANKARAM T B, et al.Synthesis and magnetoelectric studies on Na0.5Bi0.5TiO3-BiFeO3 solid solution ceramics.Solid State Sci., 2010, 12(5): 956-962. |
[60] | HENRICHS L F, CESPEDES O, BENNETT J, et al.Multiferroic clusters: a new perspective for relaxor-type room-temperature multiferroics.Adv. Fun. Mater., 2016, 26(13): 2111-2121. |
[61] | SHVARTSMAN V V, BEDANTA S, BORISOV P, et al.SrMnTiO3: a magnetoelectric multiglass.Phys. Rev. Lett., 2008, 101(16): 165704. |
[62] | MULLER K A, BURKARD H.SrTiO3: an intrinsic quantum paraelectric below 4 K.Phys. Rev. B, 1979, 19(7): 3593-3602. |
[63] | BEDNORZ J G, MULLER K A.Sr1-xCaxTiO3: an XY quantum ferroelectric with transitions to randomness. Phys. Rev. Lett., 1984, 52(25): 2289-2292. |
[64] | TKACH A, VILARINHO P M, KHOLKIN A L.Polar behavior in Mn- doped SrTiO3 ceramics.Appl. Phys. Lett., 2005, 86(17): 172902. |
[65] | TKACH A, VILARINHO P M, KHOLKIN A L, et al.Structure- microstructure-dielectric tunability relationship in Mn-doped strontium titanate ceramics.Acta Mater., 2005, 53(19): 5061-5069. |
[66] | LI J B, HUANG Y P, RAO G H, et al.Ferroelectric transition of Aurivillius compounds Bi5Ti3FeO15 and Bi6Ti3Fe2O18.Appl. Phys. Lett., 2010, 96(22): 222903. |
[67] | BAI W, YIN W B, YANG J, et al.Cryogenic temperature relaxor-like dielectric responses and magnetodielectric coupling in Aurivillius Bi5Ti3FeO15 multiferroic thin films.J. Appl. Phys., 2014, 116(8): 084103. |
[68] | HERVOCHES C H, SNEDDEN A, RIGGS R, et al.Structural behavior of the four-layer Aurivillius-phase ferroelectrics SrBi4Ti4O15 and Bi5T i3FeO15. J. Solid State Chem., 2002, 164(2): 280-291. |
[69] | ZHAO H Y, KIMURA H, CHENG Z X, et al.Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film.Sci. Rep., 2014, 4: 5255. |
[70] | HEMBERGER J, LUNKENHEIMER P, FICHTL R, et al.Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4.Nature, 2005, 434(7031): 364-367. |
[71] | CATALAN G, SCOTT J F.Magnetoelectrics: is CdCr2S4 a multiferroic relaxor?Nature, 2007, 448(7156): E4-E5. |
[72] | WALZ F.The Verwey transition—a topical review.J. Phys.: Condens. Matter, 2002, 14(12): R285-R340. |
[73] | KATO K, IIDA S, YANAI K, et al. Ferrimagnetic ferroelectricity of Fe3O4. J. Magn. Magn. Mater., 1983, 31-34(6): 783-784. |
[74] | ZIESE M, ESQUINAZI P D, PANTEL D, et al.Magnetite (Fe3O4): a new variant of relaxor multiferroic? J. Phys.: Condens. Matter, 2012, 24(8): 086007. |
[75] | FIER I, WALMSLEY L, SOUZA J A.Relaxor behavior in multiferroic BiMn2O5 ceramics.J. Appl. Phys., 2011, 110(8): 084101. |
[1] | SHI Ruijian, LEI Junwei, ZHANG Yi, XIE Aiwen, ZUO Ruzhong. Linear-like NaNbO3-based Lead-free Relaxor Antiferroelectric Ceramics with Excellent Energy-storage and Charge-discharge Properties [J]. Journal of Inorganic Materials, 2024, 39(4): 423-431. |
[2] | YUAN Chang-Lai, XUAN Min-Jie, XU Ji-Wen, LIU Xin-Yu, ZHOU Chang-Rong, YANG Yun. Preparation and Magnetoelectric Coupling Effects of Ba0.85Ca0.15Zr0.1Ti0.9O3/CoFe2O4 Laminated Ceramics [J]. Journal of Inorganic Materials, 2013, 28(3): 317-320. |
[3] | SONG Wei, WANG Xuan, ZHANG Dong, SUN Zhi, HAN Bai, HE Li-Juan, LEI Qing-Quan. Preparation and Characterization of Multiferroics BiFeO3 [J]. Journal of Inorganic Materials, 2012, 27(10): 1053-1057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||