Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (12): 1441-1448.DOI: 10.15541/jim20230198
Special Issue: 【生物材料】骨骼与齿类组织修复(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
DU Jiaheng1,2(), FAN Xinli3,4, XIAO Dongqin2, YIN Yiran1, LI Zhong1, HE Kui1, DUAN Ke1(
)
Received:
2023-04-18
Revised:
2023-06-03
Published:
2023-10-15
Online:
2023-10-15
Contact:
DUAN Ke, professor. E-mail: keduan@swmu.edu.cnAbout author:
DU Jiaheng (1997-), male, Master candidate. E-mail: dujiaheng1011@163.com
Supported by:
CLC Number:
DU Jiaheng, FAN Xinli, XIAO Dongqin, YIN Yiran, LI Zhong, HE Kui, DUAN Ke. Electrophoretic Coating of Magnesium Oxide on Microarc-oxidized Titanium and Its Biological Properties[J]. Journal of Inorganic Materials, 2023, 38(12): 1441-1448.
Fig. 7 (a) Representative photographs of colonies formed on samples after co-cultured with S. aureus for 24 h, and (b) antibacterial rates Numbers 2, 3 and 4 indicating MAO vs. MAO-MgO30, MAO-MgO45, MAO-MgO60, respectively (p<0.05)
Fig. 8 Micrographs of samples after Live/Dead fluorescent staining on co-cultured S. aureus for 24 h Red pixels: Dead S. aureus cells; Green pixels: Alive S. aureus cells; All scale bars: 100 μm
Fig. 9 SEM micrographs of samples (a) MAO and (b-e) MAO-MgO15 to MAO-MgO60 after co-culture with S. aureus for 24 h; Red arrows pointing to S. aureus cells
Fig. 10 Viability of rat osteoblasts after co-culture on samples for 1, 3 and 5 d Numbers 3, 4 and 5 indicating MAO vs. MAO-MgO30, MAO-MgO45, MAO-MgO60, respectively (p<0.05)
Fig. 11 Images of samples after Live/Dead fluorescent staining on co-cultured rat osteoblasts for 5 d Red pixels: Dead cells; Green pixels: Alive cells; All scale bars: 100 μm
[1] |
POTAPOVA I. Functional imaging in diagnostic of orthopedic implant-associated infections. Diagnostics, 2013, 3(4): 356.
DOI PMID |
[2] |
MALIZOS K, BLAUTH M, DANITA A, et al. Fast-resorbable antibiotic- loaded hydrogel coating to reduce post-surgical infection after internal osteosynthesis: a multicenter randomized controlled trial. Journal of Orthopaedics and Traumatology, 2017, 18(2): 159.
DOI URL |
[3] |
CAO H, MENG F, LIU X, et al. Antimicrobial activity of tantalum oxide coatings decorated with Ag nanoparticles. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2016, 34(4): 04C102.
DOI URL |
[4] | OLSEN I. Biofilm-specific antibiotic tolerance and resistance. European Journal of Clinical Microbiology & Infectious Diseases, 2015, 34(5): 877. |
[5] |
SCHINS R P F, KNAAPEN A M. Genotoxicity of poorly soluble particles. Inhalation Toxicology, 2007, 19(sup1): 189.
DOI URL |
[6] |
PALACIOS-HERNANDEZ T, DIAZ-DIESTRA DM, NGUYEN A K, et al. Cytotoxicity, cellular uptake and apoptotic responses in human coronary artery endothelial cells exposed to ultrasmall superparamagnetic iron oxide nanoparticles. Journal of Applied Toxicology, 2020, 40(7): 918.
DOI URL |
[7] | WANG Y, YU H, CHEN C, et al. Review of the biocompatibility of micro-arc oxidation coated titanium alloys. Materials & Design, 2015, 8(5): 640. |
[8] | XUE T, ATTARILAR S, LIU S, et al. Surface modification techniques of titanium and its alloys to functionally optimize their biomedical properties: thematic review. Frontiers in Bioengineering and Biotechnology, 2020, 8: 603072. |
[9] |
AL-AHMAD A, WIEDMANN-AL-AHMAD M, FACKLER A, et al. In vivo study of the initial bacterial adhesion on different implant materials. Archives of Oral Biology, 2013, 58(9): 1139.
DOI URL |
[10] | AL-AHMAD A, WIEDMANN-AL-AHMAD M, FAUST J, et al. Biofilm formation and composition on different implant materials in vivo. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2010, 95(1): 101. |
[11] | CHEN Y, SHENG W, LIN J, et al. Magnesium oxide nanoparticle coordinated phosphate-functionalized chitosan injectable hydrogel for osteogenesis and angiogenesis in bone regeneration. ACS Applied Materials & Interfaces, 2022, 14(6): 7592. |
[12] |
CHEN R, CHEN H B, XUE P P, et al. HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats. Journal of Materials Chemistry B, 2021, 9(4): 1107.
DOI PMID |
[13] | LUQUE-AGUDO V, FERNÁNDEZ-CALDERÓN M C, PACHA- OLIVENZA M A, et al. The role of magnesium in biomaterials related infections. Colloids and Surfaces B: Biointerfaces, 2020, 191: 110996. |
[14] | NGUYEN N Y T, GRELLING N, WETTELAND C L, et al. Antimicrobial activities and mechanisms of magnesium oxide nanoparticles (nMgO) against pathogenic bacteria, yeasts, and biofilms. Scientific Reports, 2018, 8: 16260. |
[15] | COELHO C C, PADRÃO T, COSTA L, et al. The antibacterial and angiogenic effect of magnesium oxide in a hydroxyapatite bone substitute. Scientific Reports, 2020, 10: 19098. |
[16] | BOCCACCINI A R, KEIM S, MA R, et al. Electrophoretic deposition of biomaterials. Journal of the Royal Society Interface, 2010, 7(suppl_5): S581. |
[17] |
BRUCHIEL-SPANIER N, BETSIS S, NAIM G, et al. Electrochemical and electrophoretic coatings of medical implants by nanomaterials. Journal of Solid State Electrochemistry, 2022, 26(9): 1871.
DOI |
[18] |
HICKEY D J, MUTHUSAMY D, WEBSTER T J. Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to poly-L-lactic acid for orthopedic applications. Journal of Biomedical Materials Research Part A, 2017, 105(11): 3136.
DOI PMID |
[19] | LIN Y J, LI D Q, WANG G, et al. Preparation and bactericidal property of MgO nanoparticles on gamma-Al2O3. Journal Materials Science: Materials in Medcine, 2005, 16(1): 53. |
[20] | AL-SHARABI A, SADA'A KSS, AL-OSTA A, et al. Structure, optical properties and antimicrobial activities of MgO-BiCrO nanocomposites prepared via solvent-deficient method. Scientific Reports, 2022, 12: 10647. |
[21] | LI X, HONG X, YANG Y, et al. Enhanced antibacterial activity of acid treated MgO nanoparticles on Escherichia coli. RSC Advances, 2021, 11(60): 38202. |
[22] | CHEN Q, GARCIA RP, MUNOZ J, et al. Cellulose nanocrystals-- bioactive glass hybrid coating as bone substitutes by electrophoretic co-deposition: in situ control of mineralization of bioactive glass and enhancement of osteoblastic performance. ACS Applied Materials & Interfaces, 2015, 7(44): 24715. |
[23] | LIU X, XIE Z, ZHANG C, et al. Bioactive borate glass scaffolds: in vitro and in vivo evaluation for use as a drug delivery system in the treatment of bone infection. Journal Materials Science: Materials in Medcine, 2010, 21(2): 575. |
[24] |
HOSSEINBABAEI F, RAISSIDEHKORDI B. Electrophoretic deposition of MgO thick films from an acetone suspension. Journal of the European Ceramic Society, 2000, 20(12): 2165.
DOI URL |
[25] | 董自艳, 戴翚, 马仕洪, 等.紫外-可见分光光度法快速确定细菌菌液的浓度. 中国药品标准, 2014, 15(2): 120. |
[26] |
KIM D Y, KIM M, KIM H E, et al. Formation of hydroxyapatite within porous TiO2 layer by micro-arc oxidation coupled with electrophoretic deposition. Acta Biomaterialia, 2009, 5(6): 2196.
DOI URL |
[27] |
FAN X, FENG B, DI Y, et al. Preparation of bioactive TiO film on porous titanium by micro-arc oxidation. Applied Surface Science, 2012, 258(19): 7584.
DOI URL |
[28] |
DAGHIGHI S, SJOLLEMA J, VAN DER MEI H C, et al. Infection resistance of degradable versus non-degradable biomaterials: an assessment of the potential mechanisms. Biomaterials, 2013, 34(33): 8013.
DOI PMID |
[29] |
MUÑIZ DIAZ R, CARDOSO-AVILA P E, PÉREZ TAVARES J A, et al. Two-step triethylamine-based synthesis of MgO nanoparticles and their antibacterial effect against pathogenic bacteria. Nanomaterials, 2021, 11(2): 410.
DOI URL |
[30] |
TAN J, LIU Z, WANG D, et al. A facile and universal strategy to endow implant materials with antibacterial ability via alkalinity disturbing bacterial respiration. Biomaterials Science, 2020, 8(7): 1815.
DOI URL |
[31] | LEUNG Y H, NG A M C, XU X, et al. Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small, 2014, 10(6): 1171. |
[32] | RICKER A, LIU-SNYDER P, WEBSTER T J. The influence of nano MgO and BaSO4 particle size additives on properties of PMMA bone cement. International Journal of Nanomedicine, 2008, 3(1): 125. |
[33] | DEMIREL M. Mechanical properties and cell viability of MgO- reinforced biografts fabricated for biomedical applications. Acta of Bioengineering and Biomechanics, 2018, 20(4): 83. |
[34] |
JANNING C, WILLBOLD E, VOGT C, et al. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling. Acta Biomaterialia, 2010, 6(5): 1861.
DOI PMID |
[35] | AGARWAL S, CURTIN J, DUFFY B, et al. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Materials Science and Engineering: C, 2016, 68: 948. |
[36] |
ZHU B, WANG L, WU Y, et al. Improving corrosion resistance and biocompatibility of AZ31 magnesium alloy by ultrasonic cold forging and micro-arc oxidation. Journal of Biomaterials Applications, 2022, 36(9): 1664.
DOI PMID |
[37] |
ZHUANG J, JING Y, WANG Y, et al. Degraded and osteogenic properties of coated magnesium alloy AZ31: an experimental study. Journal of Orthopaedic Surgery and Research, 2016, 11(1): 1.
DOI URL |
[1] | WANG Zhaoyang, QIN Peng, JIANG Yin, FENG Xiaobo, YANG Peizhi, HUANG Fuqiang. Sandwich Structured Ru@TiO2 Composite for Efficient Photocatalytic Tetracycline Degradation [J]. Journal of Inorganic Materials, 2024, 39(4): 383-389. |
[2] | LI Chengyu, DING Ziyou, HAN Yingchao. In vitro Antibacterial and Osteogenic Properties of Manganese Doped Nano Hydroxyapatite [J]. Journal of Inorganic Materials, 2024, 39(3): 313-320. |
[3] | ZHANG Zhimin, GE Min, LIN Han, SHI Jianlin. Novel Magnetoelectric Catalytic Nanoparticles: RNS Release and Antibacterial Efficiency [J]. Journal of Inorganic Materials, 2024, 39(10): 1114-1124. |
[4] | ZHANG Shumin, XI Xiaowen, SUN Lei, SUN Ping, WANG Deqiang, WEI Jie. Sonodynamic and Enzyme-like Activities of Niobium-based Coatings: Antimicrobial, Cell Proliferation and Cell Differentiation [J]. Journal of Inorganic Materials, 2024, 39(10): 1125-1134. |
[5] | SHANGGUAN Li, NIE Xiaoshuang, YE Kuicai, CUI Yuanyuan, QIAO Yuqin. Effects of Surface Wettability of Titanium Oxide Coatings on Osteoimmunomodulatory Properties [J]. Journal of Inorganic Materials, 2023, 38(12): 1457-1565. |
[6] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[7] | WU Xuetong, ZHANG Ruofei, YAN Xiyun, FAN Kelong. Nanozyme: a New Approach for Anti-microbial Infections [J]. Journal of Inorganic Materials, 2023, 38(1): 43-54. |
[8] | SHENG Lili, CHANG Jiang. Photo/Magnetic Thermal Fe2SiO4/Fe3O4 Biphasic Bioceramic and Its Composite Electrospun Membrane: Preparation and Antibacterial [J]. Journal of Inorganic Materials, 2022, 37(9): 983-990. |
[9] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[10] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[11] | WU Ling, TAN Ji, QIAN Shi, GE Naijian, LIU Xuanyong. Biological Property Investigation of Nitinol Surface Implanted with Tantalum [J]. Journal of Inorganic Materials, 2022, 37(11): 1217-1224. |
[12] | FU Jiajun, SHEN Tao, WU Jia, WANG Chen. Nanozyme: a New Strategy Combating Bacterial [J]. Journal of Inorganic Materials, 2021, 36(3): 257-268. |
[13] | GUO Xiaowei, LI Yuyan, CHEN Nanchun, WANG Xiuli, XIE Qinglin. Construction of Sustainable Release Antimicrobial Microspheres Loaded with Potassium Diformate [J]. Journal of Inorganic Materials, 2021, 36(2): 181-187. |
[14] | ZHANG Dawei, ZHU Liyuan, LU Hongliang, WANG Zuolin. Titanium Modified with ZnO Nanofilm and Fibronectin: Preventing Peri-implantitis and Biocompatibility [J]. Journal of Inorganic Materials, 2021, 36(12): 1316-1322. |
[15] | PAN Bichen,REN Penghe,ZHOU Tejun,CAI Zhenyang,ZHAO Xiaojun,ZHOU Hongming,XIAO Lairong. Microstructure and Property of Thermal Insulation Coating on the Carbon Fiber Reinforced Epoxy Resin Composites [J]. Journal of Inorganic Materials, 2020, 35(8): 947-952. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||